ddx 0.6.0
Libary for domain-decomposition methods for polarizable continuum models
llgnew.f
1c
2c routine to generate the lebedev-laikov grid (g and w for the weights arrays)
3c with the closest number of points from ng
4c
5 subroutine llgrid(ngrid,w,grid)
6 implicit real*8 (a-h,o-z)
7 integer ngmax,ngrid
8 parameter(ngmax=5810)
9 integer n,i
10 real*8 w(*),grid(3,*), one, four, pi
11 real*8 wtemp(ngmax),x(ngmax),y(ngmax),z(ngmax)
12 save one, four
13 data one/1.0d0/, four /4.0d0/
14c
15 if (ngrid.eq.6) then
16 call ld0006(x,y,z,wtemp,n)
17 else if (ngrid.eq.14) then
18 call ld0014(x,y,z,wtemp,n)
19 else if (ngrid.eq.26) then
20 call ld0026(x,y,z,wtemp,n)
21 else if (ngrid.eq.38) then
22 call ld0038(x,y,z,wtemp,n)
23 else if (ngrid.eq.50) then
24 call ld0050(x,y,z,wtemp,n)
25 else if (ngrid.eq.74) then
26 call ld0074(x,y,z,wtemp,n)
27 else if (ngrid.eq.86) then
28 call ld0086(x,y,z,wtemp,n)
29 else if (ngrid.eq.110) then
30 call ld0110(x,y,z,wtemp,n)
31 else if (ngrid.eq.146) then
32 call ld0146(x,y,z,wtemp,n)
33 else if (ngrid.eq.170) then
34 call ld0170(x,y,z,wtemp,n)
35 else if (ngrid.eq.194) then
36 call ld0194(x,y,z,wtemp,n)
37 else if (ngrid.eq.230) then
38 call ld0230(x,y,z,wtemp,n)
39 else if (ngrid.eq.266) then
40 call ld0266(x,y,z,wtemp,n)
41 else if (ngrid.eq.302) then
42 call ld0302(x,y,z,wtemp,n)
43 else if (ngrid.eq.350) then
44 call ld0350(x,y,z,wtemp,n)
45 else if (ngrid.eq.434) then
46 call ld0434(x,y,z,wtemp,n)
47 else if (ngrid.eq.590) then
48 call ld0590(x,y,z,wtemp,n)
49 else if (ngrid.eq.770) then
50 call ld0770(x,y,z,wtemp,n)
51 else if (ngrid.eq.974) then
52 call ld0974(x,y,z,wtemp,n)
53 else if (ngrid.eq.1202) then
54 call ld1202(x,y,z,wtemp,n)
55 else if (ngrid.eq.1454) then
56 call ld1454(x,y,z,wtemp,n)
57 else if (ngrid.eq.1730) then
58 call ld1730(x,y,z,wtemp,n)
59 else if (ngrid.eq.2030) then
60 call ld2030(x,y,z,wtemp,n)
61 else if (ngrid.eq.2354) then
62 call ld2354(x,y,z,wtemp,n)
63 else if (ngrid.eq.2702) then
64 call ld2702(x,y,z,wtemp,n)
65 else if (ngrid.eq.3074) then
66 call ld3074(x,y,z,wtemp,n)
67 else if (ngrid.eq.3470) then
68 call ld3470(x,y,z,wtemp,n)
69 else if (ngrid.eq.3890) then
70 call ld3890(x,y,z,wtemp,n)
71 else if (ngrid.eq.4334) then
72 call ld4334(x,y,z,wtemp,n)
73 else if (ngrid.eq.4802) then
74 call ld4802(x,y,z,wtemp,n)
75 else if (ngrid.eq.5294) then
76 call ld5294(x,y,z,wtemp,n)
77 else if (ngrid.eq.5810) then
78 call ld5810(x,y,z,wtemp,n)
79 end if
80c
81c scaling because the weights are normalised and back to grid format
82c
83 pi = four*atan(one)
84 do 20 i = 1, ngrid
85 w(i) = wtemp(i)*four*pi
86 grid(1,i) = x(i)
87 grid(2,i) = y(i)
88 grid(3,i) = z(i)
89 20 continue
90c
91 return
92 end
93
94 subroutine gen_oh(code, num, x, y, z, wtemp, a, b, v)
95 implicit logical(a-z)
96 real*8 x(*),y(*),z(*),wtemp(*)
97 double precision a,b,v
98 integer code
99 integer num
100 double precision c
101chvd
102chvd This subroutine is part of a set of subroutines that generate
103chvd Lebedev grids [1-6] for integration on a sphere. The original
104chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
105chvd translated into fortran by Dr. Christoph van Wuellen.
106chvd This subroutine was translated from C to fortran77 by hand.
107chvd
108chvd Users of this code are asked to include reference [1] in their
109chvd publications, and in the user- and programmers-manuals
110chvd describing their codes.
111chvd
112chvd This code was distributed through CCL (http://www.ccl.net/).
113chvd
114chvd [1] V.I. Lebedev, and D.N. Laikov
115chvd "A quadrature formula for the sphere of the 131st
116chvd algebraic order of accuracy"
117chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
118chvd
119chvd [2] V.I. Lebedev
120chvd "A quadrature formula for the sphere of 59th algebraic
121chvd order of accuracy"
122chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
123chvd
124chvd [3] V.I. Lebedev, and A.L. Skorokhodov
125chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
126chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
127chvd
128chvd [4] V.I. Lebedev
129chvd "Spherical quadrature formulas exact to orders 25-29"
130chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
131chvd
132chvd [5] V.I. Lebedev
133chvd "Quadratures on a sphere"
134chvd Computational Mathematics and Mathematical Physics, Vol. 16,
135chvd 1976, pp. 10-24.
136chvd
137chvd [6] V.I. Lebedev
138chvd "Values of the nodes and weights of ninth to seventeenth
139chvd order Gauss-Markov quadrature formulae invariant under the
140chvd octahedron group with inversion"
141chvd Computational Mathematics and Mathematical Physics, Vol. 15,
142chvd 1975, pp. 44-51.
143chvd
144cvw
145cvw Given a point on a sphere (specified by a and b), generate all
146cvw the equivalent points under Oh symmetry, making grid points with
147cvw weight v.
148cvw The variable num is increased by the number of different points
149cvw generated.
150cvw
151cvw Depending on code, there are 6...48 different but equivalent
152cvw points.
153cvw
154cvw code=1: (0,0,1) etc ( 6 points)
155cvw code=2: (0,a,a) etc, a=1/sqrt(2) ( 12 points)
156cvw code=3: (a,a,a) etc, a=1/sqrt(3) ( 8 points)
157cvw code=4: (a,a,b) etc, b=sqrt(1-2 a^2) ( 24 points)
158cvw code=5: (a,b,0) etc, b=sqrt(1-a^2), a input ( 24 points)
159cvw code=6: (a,b,c) etc, c=sqrt(1-a^2-b^2), a/b input ( 48 points)
160cvw
161 goto (1,2,3,4,5,6) code
162 write (6,*) 'Gen_Oh: Invalid Code'
163 stop
164 1 continue
165 a=1.0d0
166 x(1) = a
167 y(1) = 0.0d0
168 z(1) = 0.0d0
169 wtemp(1) = v
170 x(2) = -a
171 y(2) = 0.0d0
172 z(2) = 0.0d0
173 wtemp(2) = v
174 x(3) = 0.0d0
175 y(3) = a
176 z(3) = 0.0d0
177 wtemp(3) = v
178 x(4) = 0.0d0
179 y(4) = -a
180 z(4) = 0.0d0
181 wtemp(4) = v
182 x(5) = 0.0d0
183 y(5) = 0.0d0
184 z(5) = a
185 wtemp(5) = v
186 x(6) = 0.0d0
187 y(6) = 0.0d0
188 z(6) = -a
189 wtemp(6) = v
190 num=num+6
191 return
192cvw
193 2 continue
194 a=sqrt(0.5d0)
195 x( 1) = 0d0
196 y( 1) = a
197 z( 1) = a
198 wtemp( 1) = v
199 x( 2) = 0d0
200 y( 2) = -a
201 z( 2) = a
202 wtemp( 2) = v
203 x( 3) = 0d0
204 y( 3) = a
205 z( 3) = -a
206 wtemp( 3) = v
207 x( 4) = 0d0
208 y( 4) = -a
209 z( 4) = -a
210 wtemp( 4) = v
211 x( 5) = a
212 y( 5) = 0d0
213 z( 5) = a
214 wtemp( 5) = v
215 x( 6) = -a
216 y( 6) = 0d0
217 z( 6) = a
218 wtemp( 6) = v
219 x( 7) = a
220 y( 7) = 0d0
221 z( 7) = -a
222 wtemp( 7) = v
223 x( 8) = -a
224 y( 8) = 0d0
225 z( 8) = -a
226 wtemp( 8) = v
227 x( 9) = a
228 y( 9) = a
229 z( 9) = 0d0
230 wtemp( 9) = v
231 x(10) = -a
232 y(10) = a
233 z(10) = 0d0
234 wtemp(10) = v
235 x(11) = a
236 y(11) = -a
237 z(11) = 0d0
238 wtemp(11) = v
239 x(12) = -a
240 y(12) = -a
241 z(12) = 0d0
242 wtemp(12) = v
243 num=num+12
244 return
245cvw
246 3 continue
247 a = sqrt(1d0/3d0)
248 x(1) = a
249 y(1) = a
250 z(1) = a
251 wtemp(1) = v
252 x(2) = -a
253 y(2) = a
254 z(2) = a
255 wtemp(2) = v
256 x(3) = a
257 y(3) = -a
258 z(3) = a
259 wtemp(3) = v
260 x(4) = -a
261 y(4) = -a
262 z(4) = a
263 wtemp(4) = v
264 x(5) = a
265 y(5) = a
266 z(5) = -a
267 wtemp(5) = v
268 x(6) = -a
269 y(6) = a
270 z(6) = -a
271 wtemp(6) = v
272 x(7) = a
273 y(7) = -a
274 z(7) = -a
275 wtemp(7) = v
276 x(8) = -a
277 y(8) = -a
278 z(8) = -a
279 wtemp(8) = v
280 num=num+8
281 return
282cvw
283 4 continue
284 b = sqrt(1d0 - 2d0*a*a)
285 x( 1) = a
286 y( 1) = a
287 z( 1) = b
288 wtemp( 1) = v
289 x( 2) = -a
290 y( 2) = a
291 z( 2) = b
292 wtemp( 2) = v
293 x( 3) = a
294 y( 3) = -a
295 z( 3) = b
296 wtemp( 3) = v
297 x( 4) = -a
298 y( 4) = -a
299 z( 4) = b
300 wtemp( 4) = v
301 x( 5) = a
302 y( 5) = a
303 z( 5) = -b
304 wtemp( 5) = v
305 x( 6) = -a
306 y( 6) = a
307 z( 6) = -b
308 wtemp( 6) = v
309 x( 7) = a
310 y( 7) = -a
311 z( 7) = -b
312 wtemp( 7) = v
313 x( 8) = -a
314 y( 8) = -a
315 z( 8) = -b
316 wtemp( 8) = v
317 x( 9) = a
318 y( 9) = b
319 z( 9) = a
320 wtemp( 9) = v
321 x(10) = -a
322 y(10) = b
323 z(10) = a
324 wtemp(10) = v
325 x(11) = a
326 y(11) = -b
327 z(11) = a
328 wtemp(11) = v
329 x(12) = -a
330 y(12) = -b
331 z(12) = a
332 wtemp(12) = v
333 x(13) = a
334 y(13) = b
335 z(13) = -a
336 wtemp(13) = v
337 x(14) = -a
338 y(14) = b
339 z(14) = -a
340 wtemp(14) = v
341 x(15) = a
342 y(15) = -b
343 z(15) = -a
344 wtemp(15) = v
345 x(16) = -a
346 y(16) = -b
347 z(16) = -a
348 wtemp(16) = v
349 x(17) = b
350 y(17) = a
351 z(17) = a
352 wtemp(17) = v
353 x(18) = -b
354 y(18) = a
355 z(18) = a
356 wtemp(18) = v
357 x(19) = b
358 y(19) = -a
359 z(19) = a
360 wtemp(19) = v
361 x(20) = -b
362 y(20) = -a
363 z(20) = a
364 wtemp(20) = v
365 x(21) = b
366 y(21) = a
367 z(21) = -a
368 wtemp(21) = v
369 x(22) = -b
370 y(22) = a
371 z(22) = -a
372 wtemp(22) = v
373 x(23) = b
374 y(23) = -a
375 z(23) = -a
376 wtemp(23) = v
377 x(24) = -b
378 y(24) = -a
379 z(24) = -a
380 wtemp(24) = v
381 num=num+24
382 return
383cvwtemp
384 5 continue
385 b=sqrt(1d0-a*a)
386 x( 1) = a
387 y( 1) = b
388 z( 1) = 0d0
389 wtemp( 1) = v
390 x( 2) = -a
391 y( 2) = b
392 z( 2) = 0d0
393 wtemp( 2) = v
394 x( 3) = a
395 y( 3) = -b
396 z( 3) = 0d0
397 wtemp( 3) = v
398 x( 4) = -a
399 y( 4) = -b
400 z( 4) = 0d0
401 wtemp( 4) = v
402 x( 5) = b
403 y( 5) = a
404 z( 5) = 0d0
405 wtemp( 5) = v
406 x( 6) = -b
407 y( 6) = a
408 z( 6) = 0d0
409 wtemp( 6) = v
410 x( 7) = b
411 y( 7) = -a
412 z( 7) = 0d0
413 wtemp( 7) = v
414 x( 8) = -b
415 y( 8) = -a
416 z( 8) = 0d0
417 wtemp( 8) = v
418 x( 9) = a
419 y( 9) = 0d0
420 z( 9) = b
421 wtemp( 9) = v
422 x(10) = -a
423 y(10) = 0d0
424 z(10) = b
425 wtemp(10) = v
426 x(11) = a
427 y(11) = 0d0
428 z(11) = -b
429 wtemp(11) = v
430 x(12) = -a
431 y(12) = 0d0
432 z(12) = -b
433 wtemp(12) = v
434 x(13) = b
435 y(13) = 0d0
436 z(13) = a
437 wtemp(13) = v
438 x(14) = -b
439 y(14) = 0d0
440 z(14) = a
441 wtemp(14) = v
442 x(15) = b
443 y(15) = 0d0
444 z(15) = -a
445 wtemp(15) = v
446 x(16) = -b
447 y(16) = 0d0
448 z(16) = -a
449 wtemp(16) = v
450 x(17) = 0d0
451 y(17) = a
452 z(17) = b
453 wtemp(17) = v
454 x(18) = 0d0
455 y(18) = -a
456 z(18) = b
457 wtemp(18) = v
458 x(19) = 0d0
459 y(19) = a
460 z(19) = -b
461 wtemp(19) = v
462 x(20) = 0d0
463 y(20) = -a
464 z(20) = -b
465 wtemp(20) = v
466 x(21) = 0d0
467 y(21) = b
468 z(21) = a
469 wtemp(21) = v
470 x(22) = 0d0
471 y(22) = -b
472 z(22) = a
473 wtemp(22) = v
474 x(23) = 0d0
475 y(23) = b
476 z(23) = -a
477 wtemp(23) = v
478 x(24) = 0d0
479 y(24) = -b
480 z(24) = -a
481 wtemp(24) = v
482 num=num+24
483 return
484cvwtemp
485 6 continue
486 c=sqrt(1d0 - a*a - b*b)
487 x( 1) = a
488 y( 1) = b
489 z( 1) = c
490 wtemp( 1) = v
491 x( 2) = -a
492 y( 2) = b
493 z( 2) = c
494 wtemp( 2) = v
495 x( 3) = a
496 y( 3) = -b
497 z( 3) = c
498 wtemp( 3) = v
499 x( 4) = -a
500 y( 4) = -b
501 z( 4) = c
502 wtemp( 4) = v
503 x( 5) = a
504 y( 5) = b
505 z( 5) = -c
506 wtemp( 5) = v
507 x( 6) = -a
508 y( 6) = b
509 z( 6) = -c
510 wtemp( 6) = v
511 x( 7) = a
512 y( 7) = -b
513 z( 7) = -c
514 wtemp( 7) = v
515 x( 8) = -a
516 y( 8) = -b
517 z( 8) = -c
518 wtemp( 8) = v
519 x( 9) = a
520 y( 9) = c
521 z( 9) = b
522 wtemp( 9) = v
523 x(10) = -a
524 y(10) = c
525 z(10) = b
526 wtemp(10) = v
527 x(11) = a
528 y(11) = -c
529 z(11) = b
530 wtemp(11) = v
531 x(12) = -a
532 y(12) = -c
533 z(12) = b
534 wtemp(12) = v
535 x(13) = a
536 y(13) = c
537 z(13) = -b
538 wtemp(13) = v
539 x(14) = -a
540 y(14) = c
541 z(14) = -b
542 wtemp(14) = v
543 x(15) = a
544 y(15) = -c
545 z(15) = -b
546 wtemp(15) = v
547 x(16) = -a
548 y(16) = -c
549 z(16) = -b
550 wtemp(16) = v
551 x(17) = b
552 y(17) = a
553 z(17) = c
554 wtemp(17) = v
555 x(18) = -b
556 y(18) = a
557 z(18) = c
558 wtemp(18) = v
559 x(19) = b
560 y(19) = -a
561 z(19) = c
562 wtemp(19) = v
563 x(20) = -b
564 y(20) = -a
565 z(20) = c
566 wtemp(20) = v
567 x(21) = b
568 y(21) = a
569 z(21) = -c
570 wtemp(21) = v
571 x(22) = -b
572 y(22) = a
573 z(22) = -c
574 wtemp(22) = v
575 x(23) = b
576 y(23) = -a
577 z(23) = -c
578 wtemp(23) = v
579 x(24) = -b
580 y(24) = -a
581 z(24) = -c
582 wtemp(24) = v
583 x(25) = b
584 y(25) = c
585 z(25) = a
586 wtemp(25) = v
587 x(26) = -b
588 y(26) = c
589 z(26) = a
590 wtemp(26) = v
591 x(27) = b
592 y(27) = -c
593 z(27) = a
594 wtemp(27) = v
595 x(28) = -b
596 y(28) = -c
597 z(28) = a
598 wtemp(28) = v
599 x(29) = b
600 y(29) = c
601 z(29) = -a
602 wtemp(29) = v
603 x(30) = -b
604 y(30) = c
605 z(30) = -a
606 wtemp(30) = v
607 x(31) = b
608 y(31) = -c
609 z(31) = -a
610 wtemp(31) = v
611 x(32) = -b
612 y(32) = -c
613 z(32) = -a
614 wtemp(32) = v
615 x(33) = c
616 y(33) = a
617 z(33) = b
618 wtemp(33) = v
619 x(34) = -c
620 y(34) = a
621 z(34) = b
622 wtemp(34) = v
623 x(35) = c
624 y(35) = -a
625 z(35) = b
626 wtemp(35) = v
627 x(36) = -c
628 y(36) = -a
629 z(36) = b
630 wtemp(36) = v
631 x(37) = c
632 y(37) = a
633 z(37) = -b
634 wtemp(37) = v
635 x(38) = -c
636 y(38) = a
637 z(38) = -b
638 wtemp(38) = v
639 x(39) = c
640 y(39) = -a
641 z(39) = -b
642 wtemp(39) = v
643 x(40) = -c
644 y(40) = -a
645 z(40) = -b
646 wtemp(40) = v
647 x(41) = c
648 y(41) = b
649 z(41) = a
650 wtemp(41) = v
651 x(42) = -c
652 y(42) = b
653 z(42) = a
654 wtemp(42) = v
655 x(43) = c
656 y(43) = -b
657 z(43) = a
658 wtemp(43) = v
659 x(44) = -c
660 y(44) = -b
661 z(44) = a
662 wtemp(44) = v
663 x(45) = c
664 y(45) = b
665 z(45) = -a
666 wtemp(45) = v
667 x(46) = -c
668 y(46) = b
669 z(46) = -a
670 wtemp(46) = v
671 x(47) = c
672 y(47) = -b
673 z(47) = -a
674 wtemp(47) = v
675 x(48) = -c
676 y(48) = -b
677 z(48) = -a
678 wtemp(48) = v
679 num=num+48
680 return
681 end
682
683 SUBROUTINE ld0006(X,Y,Z,W,N)
684 real*8 x( 6)
685 real*8 y( 6)
686 real*8 z( 6)
687 real*8 w( 6)
688 INTEGER N
689 DOUBLE PRECISION A,B,V
690CVW
691CVW LEBEDEV 6-POINT ANGULAR GRID
692CVW
693chvd
694chvd This subroutine is part of a set of subroutines that generate
695chvd Lebedev grids [1-6] for integration on a sphere. The original
696chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
697chvd translated into fortran by Dr. Christoph van Wuellen.
698chvd This subroutine was translated using a C to fortran77 conversion
699chvd tool written by Dr. Christoph van Wuellen.
700chvd
701chvd Users of this code are asked to include reference [1] in their
702chvd publications, and in the user- and programmers-manuals
703chvd describing their codes.
704chvd
705chvd This code was distributed through CCL (http://www.ccl.net/).
706chvd
707chvd [1] V.I. Lebedev, and D.N. Laikov
708chvd "A quadrature formula for the sphere of the 131st
709chvd algebraic order of accuracy"
710chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
711chvd
712chvd [2] V.I. Lebedev
713chvd "A quadrature formula for the sphere of 59th algebraic
714chvd order of accuracy"
715chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
716chvd
717chvd [3] V.I. Lebedev, and A.L. Skorokhodov
718chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
719chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
720chvd
721chvd [4] V.I. Lebedev
722chvd "Spherical quadrature formulas exact to orders 25-29"
723chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
724chvd
725chvd [5] V.I. Lebedev
726chvd "Quadratures on a sphere"
727chvd Computational Mathematics and Mathematical Physics, Vol. 16,
728chvd 1976, pp. 10-24.
729chvd
730chvd [6] V.I. Lebedev
731chvd "Values of the nodes and weights of ninth to seventeenth
732chvd order Gauss-Markov quadrature formulae invariant under the
733chvd octahedron group with inversion"
734chvd Computational Mathematics and Mathematical Physics, Vol. 15,
735chvd 1975, pp. 44-51.
736chvd
737 n=1
738 v=0.1666666666666667d+0
739 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
740 n=n-1
741 RETURN
742 END
743 SUBROUTINE ld0014(X,Y,Z,W,N)
744 real*8 x( 14)
745 real*8 y( 14)
746 real*8 z( 14)
747 real*8 w( 14)
748 INTEGER N
749 DOUBLE PRECISION A,B,V
750CVW
751CVW LEBEDEV 14-POINT ANGULAR GRID
752CVW
753chvd
754chvd This subroutine is part of a set of subroutines that generate
755chvd Lebedev grids [1-6] for integration on a sphere. The original
756chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
757chvd translated into fortran by Dr. Christoph van Wuellen.
758chvd This subroutine was translated using a C to fortran77 conversion
759chvd tool written by Dr. Christoph van Wuellen.
760chvd
761chvd Users of this code are asked to include reference [1] in their
762chvd publications, and in the user- and programmers-manuals
763chvd describing their codes.
764chvd
765chvd This code was distributed through CCL (http://www.ccl.net/).
766chvd
767chvd [1] V.I. Lebedev, and D.N. Laikov
768chvd "A quadrature formula for the sphere of the 131st
769chvd algebraic order of accuracy"
770chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
771chvd
772chvd [2] V.I. Lebedev
773chvd "A quadrature formula for the sphere of 59th algebraic
774chvd order of accuracy"
775chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
776chvd
777chvd [3] V.I. Lebedev, and A.L. Skorokhodov
778chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
779chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
780chvd
781chvd [4] V.I. Lebedev
782chvd "Spherical quadrature formulas exact to orders 25-29"
783chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
784chvd
785chvd [5] V.I. Lebedev
786chvd "Quadratures on a sphere"
787chvd Computational Mathematics and Mathematical Physics, Vol. 16,
788chvd 1976, pp. 10-24.
789chvd
790chvd [6] V.I. Lebedev
791chvd "Values of the nodes and weights of ninth to seventeenth
792chvd order Gauss-Markov quadrature formulae invariant under the
793chvd octahedron group with inversion"
794chvd Computational Mathematics and Mathematical Physics, Vol. 15,
795chvd 1975, pp. 44-51.
796chvd
797 n=1
798 v=0.6666666666666667d-1
799 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
800 v=0.7500000000000000d-1
801 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
802 n=n-1
803 RETURN
804 END
805 SUBROUTINE ld0026(X,Y,Z,W,N)
806 real*8 x( 26)
807 real*8 y( 26)
808 real*8 z( 26)
809 real*8 w( 26)
810 INTEGER N
811 DOUBLE PRECISION A,B,V
812CVW
813CVW LEBEDEV 26-POINT ANGULAR GRID
814CVW
815chvd
816chvd This subroutine is part of a set of subroutines that generate
817chvd Lebedev grids [1-6] for integration on a sphere. The original
818chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
819chvd translated into fortran by Dr. Christoph van Wuellen.
820chvd This subroutine was translated using a C to fortran77 conversion
821chvd tool written by Dr. Christoph van Wuellen.
822chvd
823chvd Users of this code are asked to include reference [1] in their
824chvd publications, and in the user- and programmers-manuals
825chvd describing their codes.
826chvd
827chvd This code was distributed through CCL (http://www.ccl.net/).
828chvd
829chvd [1] V.I. Lebedev, and D.N. Laikov
830chvd "A quadrature formula for the sphere of the 131st
831chvd algebraic order of accuracy"
832chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
833chvd
834chvd [2] V.I. Lebedev
835chvd "A quadrature formula for the sphere of 59th algebraic
836chvd order of accuracy"
837chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
838chvd
839chvd [3] V.I. Lebedev, and A.L. Skorokhodov
840chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
841chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
842chvd
843chvd [4] V.I. Lebedev
844chvd "Spherical quadrature formulas exact to orders 25-29"
845chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
846chvd
847chvd [5] V.I. Lebedev
848chvd "Quadratures on a sphere"
849chvd Computational Mathematics and Mathematical Physics, Vol. 16,
850chvd 1976, pp. 10-24.
851chvd
852chvd [6] V.I. Lebedev
853chvd "Values of the nodes and weights of ninth to seventeenth
854chvd order Gauss-Markov quadrature formulae invariant under the
855chvd octahedron group with inversion"
856chvd Computational Mathematics and Mathematical Physics, Vol. 15,
857chvd 1975, pp. 44-51.
858chvd
859 n=1
860 v=0.4761904761904762d-1
861 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
862 v=0.3809523809523810d-1
863 Call gen_oh( 2, n, x(n), y(n), z(n), w(n), a, b, v)
864 v=0.3214285714285714d-1
865 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
866 n=n-1
867 RETURN
868 END
869 SUBROUTINE ld0038(X,Y,Z,W,N)
870 real*8 x( 38)
871 real*8 y( 38)
872 real*8 z( 38)
873 real*8 w( 38)
874 INTEGER N
875 DOUBLE PRECISION A,B,V
876CVW
877CVW LEBEDEV 38-POINT ANGULAR GRID
878CVW
879chvd
880chvd This subroutine is part of a set of subroutines that generate
881chvd Lebedev grids [1-6] for integration on a sphere. The original
882chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
883chvd translated into fortran by Dr. Christoph van Wuellen.
884chvd This subroutine was translated using a C to fortran77 conversion
885chvd tool written by Dr. Christoph van Wuellen.
886chvd
887chvd Users of this code are asked to include reference [1] in their
888chvd publications, and in the user- and programmers-manuals
889chvd describing their codes.
890chvd
891chvd This code was distributed through CCL (http://www.ccl.net/).
892chvd
893chvd [1] V.I. Lebedev, and D.N. Laikov
894chvd "A quadrature formula for the sphere of the 131st
895chvd algebraic order of accuracy"
896chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
897chvd
898chvd [2] V.I. Lebedev
899chvd "A quadrature formula for the sphere of 59th algebraic
900chvd order of accuracy"
901chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
902chvd
903chvd [3] V.I. Lebedev, and A.L. Skorokhodov
904chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
905chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
906chvd
907chvd [4] V.I. Lebedev
908chvd "Spherical quadrature formulas exact to orders 25-29"
909chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
910chvd
911chvd [5] V.I. Lebedev
912chvd "Quadratures on a sphere"
913chvd Computational Mathematics and Mathematical Physics, Vol. 16,
914chvd 1976, pp. 10-24.
915chvd
916chvd [6] V.I. Lebedev
917chvd "Values of the nodes and weights of ninth to seventeenth
918chvd order Gauss-Markov quadrature formulae invariant under the
919chvd octahedron group with inversion"
920chvd Computational Mathematics and Mathematical Physics, Vol. 15,
921chvd 1975, pp. 44-51.
922chvd
923 n=1
924 v=0.9523809523809524d-2
925 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
926 v=0.3214285714285714d-1
927 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
928 a=0.4597008433809831d+0
929 v=0.2857142857142857d-1
930 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
931 n=n-1
932 RETURN
933 END
934 SUBROUTINE ld0050(X,Y,Z,W,N)
935 real*8 x( 50)
936 real*8 y( 50)
937 real*8 z( 50)
938 real*8 w( 50)
939 INTEGER N
940 DOUBLE PRECISION A,B,V
941CVW
942CVW LEBEDEV 50-POINT ANGULAR GRID
943CVW
944chvd
945chvd This subroutine is part of a set of subroutines that generate
946chvd Lebedev grids [1-6] for integration on a sphere. The original
947chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
948chvd translated into fortran by Dr. Christoph van Wuellen.
949chvd This subroutine was translated using a C to fortran77 conversion
950chvd tool written by Dr. Christoph van Wuellen.
951chvd
952chvd Users of this code are asked to include reference [1] in their
953chvd publications, and in the user- and programmers-manuals
954chvd describing their codes.
955chvd
956chvd This code was distributed through CCL (http://www.ccl.net/).
957chvd
958chvd [1] V.I. Lebedev, and D.N. Laikov
959chvd "A quadrature formula for the sphere of the 131st
960chvd algebraic order of accuracy"
961chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
962chvd
963chvd [2] V.I. Lebedev
964chvd "A quadrature formula for the sphere of 59th algebraic
965chvd order of accuracy"
966chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
967chvd
968chvd [3] V.I. Lebedev, and A.L. Skorokhodov
969chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
970chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
971chvd
972chvd [4] V.I. Lebedev
973chvd "Spherical quadrature formulas exact to orders 25-29"
974chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
975chvd
976chvd [5] V.I. Lebedev
977chvd "Quadratures on a sphere"
978chvd Computational Mathematics and Mathematical Physics, Vol. 16,
979chvd 1976, pp. 10-24.
980chvd
981chvd [6] V.I. Lebedev
982chvd "Values of the nodes and weights of ninth to seventeenth
983chvd order Gauss-Markov quadrature formulae invariant under the
984chvd octahedron group with inversion"
985chvd Computational Mathematics and Mathematical Physics, Vol. 15,
986chvd 1975, pp. 44-51.
987chvd
988 n=1
989 v=0.1269841269841270d-1
990 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
991 v=0.2257495590828924d-1
992 Call gen_oh( 2, n, x(n), y(n), z(n), w(n), a, b, v)
993 v=0.2109375000000000d-1
994 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
995 a=0.3015113445777636d+0
996 v=0.2017333553791887d-1
997 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
998 n=n-1
999 RETURN
1000 END
1001 SUBROUTINE ld0074(X,Y,Z,W,N)
1002 real*8 x( 74)
1003 real*8 y( 74)
1004 real*8 z( 74)
1005 real*8 w( 74)
1006 INTEGER N
1007 DOUBLE PRECISION A,B,V
1008CVW
1009CVW LEBEDEV 74-POINT ANGULAR GRID
1010CVW
1011chvd
1012chvd This subroutine is part of a set of subroutines that generate
1013chvd Lebedev grids [1-6] for integration on a sphere. The original
1014chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
1015chvd translated into fortran by Dr. Christoph van Wuellen.
1016chvd This subroutine was translated using a C to fortran77 conversion
1017chvd tool written by Dr. Christoph van Wuellen.
1018chvd
1019chvd Users of this code are asked to include reference [1] in their
1020chvd publications, and in the user- and programmers-manuals
1021chvd describing their codes.
1022chvd
1023chvd This code was distributed through CCL (http://www.ccl.net/).
1024chvd
1025chvd [1] V.I. Lebedev, and D.N. Laikov
1026chvd "A quadrature formula for the sphere of the 131st
1027chvd algebraic order of accuracy"
1028chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
1029chvd
1030chvd [2] V.I. Lebedev
1031chvd "A quadrature formula for the sphere of 59th algebraic
1032chvd order of accuracy"
1033chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
1034chvd
1035chvd [3] V.I. Lebedev, and A.L. Skorokhodov
1036chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
1037chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
1038chvd
1039chvd [4] V.I. Lebedev
1040chvd "Spherical quadrature formulas exact to orders 25-29"
1041chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
1042chvd
1043chvd [5] V.I. Lebedev
1044chvd "Quadratures on a sphere"
1045chvd Computational Mathematics and Mathematical Physics, Vol. 16,
1046chvd 1976, pp. 10-24.
1047chvd
1048chvd [6] V.I. Lebedev
1049chvd "Values of the nodes and weights of ninth to seventeenth
1050chvd order Gauss-Markov quadrature formulae invariant under the
1051chvd octahedron group with inversion"
1052chvd Computational Mathematics and Mathematical Physics, Vol. 15,
1053chvd 1975, pp. 44-51.
1054chvd
1055 n=1
1056 v=0.5130671797338464d-3
1057 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
1058 v=0.1660406956574204d-1
1059 Call gen_oh( 2, n, x(n), y(n), z(n), w(n), a, b, v)
1060 v=-0.2958603896103896d-1
1061 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
1062 a=0.4803844614152614d+0
1063 v=0.2657620708215946d-1
1064 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1065 a=0.3207726489807764d+0
1066 v=0.1652217099371571d-1
1067 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
1068 n=n-1
1069 RETURN
1070 END
1071 SUBROUTINE ld0086(X,Y,Z,W,N)
1072 real*8 x( 86)
1073 real*8 y( 86)
1074 real*8 z( 86)
1075 real*8 w( 86)
1076 INTEGER N
1077 DOUBLE PRECISION A,B,V
1078CVW
1079CVW LEBEDEV 86-POINT ANGULAR GRID
1080CVW
1081chvd
1082chvd This subroutine is part of a set of subroutines that generate
1083chvd Lebedev grids [1-6] for integration on a sphere. The original
1084chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
1085chvd translated into fortran by Dr. Christoph van Wuellen.
1086chvd This subroutine was translated using a C to fortran77 conversion
1087chvd tool written by Dr. Christoph van Wuellen.
1088chvd
1089chvd Users of this code are asked to include reference [1] in their
1090chvd publications, and in the user- and programmers-manuals
1091chvd describing their codes.
1092chvd
1093chvd This code was distributed through CCL (http://www.ccl.net/).
1094chvd
1095chvd [1] V.I. Lebedev, and D.N. Laikov
1096chvd "A quadrature formula for the sphere of the 131st
1097chvd algebraic order of accuracy"
1098chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
1099chvd
1100chvd [2] V.I. Lebedev
1101chvd "A quadrature formula for the sphere of 59th algebraic
1102chvd order of accuracy"
1103chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
1104chvd
1105chvd [3] V.I. Lebedev, and A.L. Skorokhodov
1106chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
1107chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
1108chvd
1109chvd [4] V.I. Lebedev
1110chvd "Spherical quadrature formulas exact to orders 25-29"
1111chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
1112chvd
1113chvd [5] V.I. Lebedev
1114chvd "Quadratures on a sphere"
1115chvd Computational Mathematics and Mathematical Physics, Vol. 16,
1116chvd 1976, pp. 10-24.
1117chvd
1118chvd [6] V.I. Lebedev
1119chvd "Values of the nodes and weights of ninth to seventeenth
1120chvd order Gauss-Markov quadrature formulae invariant under the
1121chvd octahedron group with inversion"
1122chvd Computational Mathematics and Mathematical Physics, Vol. 15,
1123chvd 1975, pp. 44-51.
1124chvd
1125 n=1
1126 v=0.1154401154401154d-1
1127 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
1128 v=0.1194390908585628d-1
1129 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
1130 a=0.3696028464541502d+0
1131 v=0.1111055571060340d-1
1132 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1133 a=0.6943540066026664d+0
1134 v=0.1187650129453714d-1
1135 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1136 a=0.3742430390903412d+0
1137 v=0.1181230374690448d-1
1138 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
1139 n=n-1
1140 RETURN
1141 END
1142 SUBROUTINE ld0110(X,Y,Z,W,N)
1143 real*8 x( 110)
1144 real*8 y( 110)
1145 real*8 z( 110)
1146 real*8 w( 110)
1147 INTEGER N
1148 DOUBLE PRECISION A,B,V
1149CVW
1150CVW LEBEDEV 110-POINT ANGULAR GRID
1151CVW
1152chvd
1153chvd This subroutine is part of a set of subroutines that generate
1154chvd Lebedev grids [1-6] for integration on a sphere. The original
1155chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
1156chvd translated into fortran by Dr. Christoph van Wuellen.
1157chvd This subroutine was translated using a C to fortran77 conversion
1158chvd tool written by Dr. Christoph van Wuellen.
1159chvd
1160chvd Users of this code are asked to include reference [1] in their
1161chvd publications, and in the user- and programmers-manuals
1162chvd describing their codes.
1163chvd
1164chvd This code was distributed through CCL (http://www.ccl.net/).
1165chvd
1166chvd [1] V.I. Lebedev, and D.N. Laikov
1167chvd "A quadrature formula for the sphere of the 131st
1168chvd algebraic order of accuracy"
1169chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
1170chvd
1171chvd [2] V.I. Lebedev
1172chvd "A quadrature formula for the sphere of 59th algebraic
1173chvd order of accuracy"
1174chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
1175chvd
1176chvd [3] V.I. Lebedev, and A.L. Skorokhodov
1177chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
1178chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
1179chvd
1180chvd [4] V.I. Lebedev
1181chvd "Spherical quadrature formulas exact to orders 25-29"
1182chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
1183chvd
1184chvd [5] V.I. Lebedev
1185chvd "Quadratures on a sphere"
1186chvd Computational Mathematics and Mathematical Physics, Vol. 16,
1187chvd 1976, pp. 10-24.
1188chvd
1189chvd [6] V.I. Lebedev
1190chvd "Values of the nodes and weights of ninth to seventeenth
1191chvd order Gauss-Markov quadrature formulae invariant under the
1192chvd octahedron group with inversion"
1193chvd Computational Mathematics and Mathematical Physics, Vol. 15,
1194chvd 1975, pp. 44-51.
1195chvd
1196 n=1
1197 v=0.3828270494937162d-2
1198 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
1199 v=0.9793737512487512d-2
1200 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
1201 a=0.1851156353447362d+0
1202 v=0.8211737283191111d-2
1203 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1204 a=0.6904210483822922d+0
1205 v=0.9942814891178103d-2
1206 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1207 a=0.3956894730559419d+0
1208 v=0.9595471336070963d-2
1209 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1210 a=0.4783690288121502d+0
1211 v=0.9694996361663028d-2
1212 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
1213 n=n-1
1214 RETURN
1215 END
1216 SUBROUTINE ld0146(X,Y,Z,W,N)
1217 real*8 x( 146)
1218 real*8 y( 146)
1219 real*8 z( 146)
1220 real*8 w( 146)
1221 INTEGER N
1222 DOUBLE PRECISION A,B,V
1223CVW
1224CVW LEBEDEV 146-POINT ANGULAR GRID
1225CVW
1226chvd
1227chvd This subroutine is part of a set of subroutines that generate
1228chvd Lebedev grids [1-6] for integration on a sphere. The original
1229chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
1230chvd translated into fortran by Dr. Christoph van Wuellen.
1231chvd This subroutine was translated using a C to fortran77 conversion
1232chvd tool written by Dr. Christoph van Wuellen.
1233chvd
1234chvd Users of this code are asked to include reference [1] in their
1235chvd publications, and in the user- and programmers-manuals
1236chvd describing their codes.
1237chvd
1238chvd This code was distributed through CCL (http://www.ccl.net/).
1239chvd
1240chvd [1] V.I. Lebedev, and D.N. Laikov
1241chvd "A quadrature formula for the sphere of the 131st
1242chvd algebraic order of accuracy"
1243chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
1244chvd
1245chvd [2] V.I. Lebedev
1246chvd "A quadrature formula for the sphere of 59th algebraic
1247chvd order of accuracy"
1248chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
1249chvd
1250chvd [3] V.I. Lebedev, and A.L. Skorokhodov
1251chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
1252chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
1253chvd
1254chvd [4] V.I. Lebedev
1255chvd "Spherical quadrature formulas exact to orders 25-29"
1256chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
1257chvd
1258chvd [5] V.I. Lebedev
1259chvd "Quadratures on a sphere"
1260chvd Computational Mathematics and Mathematical Physics, Vol. 16,
1261chvd 1976, pp. 10-24.
1262chvd
1263chvd [6] V.I. Lebedev
1264chvd "Values of the nodes and weights of ninth to seventeenth
1265chvd order Gauss-Markov quadrature formulae invariant under the
1266chvd octahedron group with inversion"
1267chvd Computational Mathematics and Mathematical Physics, Vol. 15,
1268chvd 1975, pp. 44-51.
1269chvd
1270 n=1
1271 v=0.5996313688621381d-3
1272 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
1273 v=0.7372999718620756d-2
1274 Call gen_oh( 2, n, x(n), y(n), z(n), w(n), a, b, v)
1275 v=0.7210515360144488d-2
1276 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
1277 a=0.6764410400114264d+0
1278 v=0.7116355493117555d-2
1279 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1280 a=0.4174961227965453d+0
1281 v=0.6753829486314477d-2
1282 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1283 a=0.1574676672039082d+0
1284 v=0.7574394159054034d-2
1285 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1286 a=0.1403553811713183d+0
1287 b=0.4493328323269557d+0
1288 v=0.6991087353303262d-2
1289 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
1290 n=n-1
1291 RETURN
1292 END
1293 SUBROUTINE ld0170(X,Y,Z,W,N)
1294 real*8 x( 170)
1295 real*8 y( 170)
1296 real*8 z( 170)
1297 real*8 w( 170)
1298 INTEGER N
1299 DOUBLE PRECISION A,B,V
1300CVW
1301CVW LEBEDEV 170-POINT ANGULAR GRID
1302CVW
1303chvd
1304chvd This subroutine is part of a set of subroutines that generate
1305chvd Lebedev grids [1-6] for integration on a sphere. The original
1306chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
1307chvd translated into fortran by Dr. Christoph van Wuellen.
1308chvd This subroutine was translated using a C to fortran77 conversion
1309chvd tool written by Dr. Christoph van Wuellen.
1310chvd
1311chvd Users of this code are asked to include reference [1] in their
1312chvd publications, and in the user- and programmers-manuals
1313chvd describing their codes.
1314chvd
1315chvd This code was distributed through CCL (http://www.ccl.net/).
1316chvd
1317chvd [1] V.I. Lebedev, and D.N. Laikov
1318chvd "A quadrature formula for the sphere of the 131st
1319chvd algebraic order of accuracy"
1320chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
1321chvd
1322chvd [2] V.I. Lebedev
1323chvd "A quadrature formula for the sphere of 59th algebraic
1324chvd order of accuracy"
1325chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
1326chvd
1327chvd [3] V.I. Lebedev, and A.L. Skorokhodov
1328chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
1329chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
1330chvd
1331chvd [4] V.I. Lebedev
1332chvd "Spherical quadrature formulas exact to orders 25-29"
1333chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
1334chvd
1335chvd [5] V.I. Lebedev
1336chvd "Quadratures on a sphere"
1337chvd Computational Mathematics and Mathematical Physics, Vol. 16,
1338chvd 1976, pp. 10-24.
1339chvd
1340chvd [6] V.I. Lebedev
1341chvd "Values of the nodes and weights of ninth to seventeenth
1342chvd order Gauss-Markov quadrature formulae invariant under the
1343chvd octahedron group with inversion"
1344chvd Computational Mathematics and Mathematical Physics, Vol. 15,
1345chvd 1975, pp. 44-51.
1346chvd
1347 n=1
1348 v=0.5544842902037365d-2
1349 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
1350 v=0.6071332770670752d-2
1351 Call gen_oh( 2, n, x(n), y(n), z(n), w(n), a, b, v)
1352 v=0.6383674773515093d-2
1353 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
1354 a=0.2551252621114134d+0
1355 v=0.5183387587747790d-2
1356 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1357 a=0.6743601460362766d+0
1358 v=0.6317929009813725d-2
1359 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1360 a=0.4318910696719410d+0
1361 v=0.6201670006589077d-2
1362 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1363 a=0.2613931360335988d+0
1364 v=0.5477143385137348d-2
1365 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
1366 a=0.4990453161796037d+0
1367 b=0.1446630744325115d+0
1368 v=0.5968383987681156d-2
1369 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
1370 n=n-1
1371 RETURN
1372 END
1373 SUBROUTINE ld0194(X,Y,Z,W,N)
1374 real*8 x( 194)
1375 real*8 y( 194)
1376 real*8 z( 194)
1377 real*8 w( 194)
1378 INTEGER N
1379 DOUBLE PRECISION A,B,V
1380CVW
1381CVW LEBEDEV 194-POINT ANGULAR GRID
1382CVW
1383chvd
1384chvd This subroutine is part of a set of subroutines that generate
1385chvd Lebedev grids [1-6] for integration on a sphere. The original
1386chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
1387chvd translated into fortran by Dr. Christoph van Wuellen.
1388chvd This subroutine was translated using a C to fortran77 conversion
1389chvd tool written by Dr. Christoph van Wuellen.
1390chvd
1391chvd Users of this code are asked to include reference [1] in their
1392chvd publications, and in the user- and programmers-manuals
1393chvd describing their codes.
1394chvd
1395chvd This code was distributed through CCL (http://wtempwtempwtemp.ccl.net/).
1396chvd
1397chvd [1] V.I. Lebedev, and D.N. Laikov
1398chvd "A quadrature formula for the sphere of the 131st
1399chvd algebraic order of accuracy"
1400chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
1401chvd
1402chvd [2] V.I. Lebedev
1403chvd "A quadrature formula for the sphere of 59th algebraic
1404chvd order of accuracy"
1405chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
1406chvd
1407chvd [3] V.I. Lebedev, and A.L. Skorokhodov
1408chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
1409chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
1410chvd
1411chvd [4] V.I. Lebedev
1412chvd "Spherical quadrature formulas exact to orders 25-29"
1413chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
1414chvd
1415chvd [5] V.I. Lebedev
1416chvd "Quadratures on a sphere"
1417chvd Computational Mathematics and Mathematical Physics, Vol. 16,
1418chvd 1976, pp. 10-24.
1419chvd
1420chvd [6] V.I. Lebedev
1421chvd "Values of the nodes and weights of ninth to seventeenth
1422chvd order Gauss-Markov quadrature formulae invariant under the
1423chvd octahedron group with inversion"
1424chvd Computational Mathematics and Mathematical Physics, Vol. 15,
1425chvd 1975, pp. 44-51.
1426chvd
1427 n=1
1428 v=0.1782340447244611d-2
1429 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
1430 v=0.5716905949977102d-2
1431 Call gen_oh( 2, n, x(n), y(n), z(n), w(n), a, b, v)
1432 v=0.5573383178848738d-2
1433 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
1434 a=0.6712973442695226d+0
1435 v=0.5608704082587997d-2
1436 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1437 a=0.2892465627575439d+0
1438 v=0.5158237711805383d-2
1439 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1440 a=0.4446933178717437d+0
1441 v=0.5518771467273614d-2
1442 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1443 a=0.1299335447650067d+0
1444 v=0.4106777028169394d-2
1445 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1446 a=0.3457702197611283d+0
1447 v=0.5051846064614808d-2
1448 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
1449 a=0.1590417105383530d+0
1450 b=0.8360360154824589d+0
1451 v=0.5530248916233094d-2
1452 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
1453 n=n-1
1454 RETURN
1455 END
1456 SUBROUTINE ld0230(X,Y,Z,W,N)
1457 real*8 x( 230)
1458 real*8 y( 230)
1459 real*8 z( 230)
1460 real*8 w( 230)
1461 INTEGER N
1462 DOUBLE PRECISION A,B,V
1463CVW
1464CVW LEBEDEV 230-POINT ANGULAR GRID
1465CVW
1466chvd
1467chvd This subroutine is part of a set of subroutines that generate
1468chvd Lebedev grids [1-6] for integration on a sphere. The original
1469chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
1470chvd translated into fortran by Dr. Christoph van Wuellen.
1471chvd This subroutine was translated using a C to fortran77 conversion
1472chvd tool written by Dr. Christoph van Wuellen.
1473chvd
1474chvd Users of this code are asked to include reference [1] in their
1475chvd publications, and in the user- and programmers-manuals
1476chvd describing their codes.
1477chvd
1478chvd This code was distributed through CCL (http://wtempwtempwtemp.ccl.net/).
1479chvd
1480chvd [1] V.I. Lebedev, and D.N. Laikov
1481chvd "A quadrature formula for the sphere of the 131st
1482chvd algebraic order of accuracy"
1483chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
1484chvd
1485chvd [2] V.I. Lebedev
1486chvd "A quadrature formula for the sphere of 59th algebraic
1487chvd order of accuracy"
1488chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
1489chvd
1490chvd [3] V.I. Lebedev, and A.L. Skorokhodov
1491chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
1492chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
1493chvd
1494chvd [4] V.I. Lebedev
1495chvd "Spherical quadrature formulas exact to orders 25-29"
1496chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
1497chvd
1498chvd [5] V.I. Lebedev
1499chvd "Quadratures on a sphere"
1500chvd Computational Mathematics and Mathematical Physics, Vol. 16,
1501chvd 1976, pp. 10-24.
1502chvd
1503chvd [6] V.I. Lebedev
1504chvd "Values of the nodes and weights of ninth to seventeenth
1505chvd order Gauss-Markov quadrature formulae invariant under the
1506chvd octahedron group with inversion"
1507chvd Computational Mathematics and Mathematical Physics, Vol. 15,
1508chvd 1975, pp. 44-51.
1509chvd
1510 n=1
1511 v=-0.5522639919727325d-1
1512 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
1513 v=0.4450274607445226d-2
1514 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
1515 a=0.4492044687397611d+0
1516 v=0.4496841067921404d-2
1517 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1518 a=0.2520419490210201d+0
1519 v=0.5049153450478750d-2
1520 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1521 a=0.6981906658447242d+0
1522 v=0.3976408018051883d-2
1523 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1524 a=0.6587405243460960d+0
1525 v=0.4401400650381014d-2
1526 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1527 a=0.4038544050097660d-1
1528 v=0.1724544350544401d-1
1529 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1530 a=0.5823842309715585d+0
1531 v=0.4231083095357343d-2
1532 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
1533 a=0.3545877390518688d+0
1534 v=0.5198069864064399d-2
1535 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
1536 a=0.2272181808998187d+0
1537 b=0.4864661535886647d+0
1538 v=0.4695720972568883d-2
1539 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
1540 n=n-1
1541 RETURN
1542 END
1543 SUBROUTINE ld0266(X,Y,Z,W,N)
1544 real*8 x( 266)
1545 real*8 y( 266)
1546 real*8 z( 266)
1547 real*8 w( 266)
1548 INTEGER N
1549 DOUBLE PRECISION A,B,V
1550CVW
1551CVW LEBEDEV 266-POINT ANGULAR GRID
1552CVW
1553chvd
1554chvd This subroutine is part of a set of subroutines that generate
1555chvd Lebedev grids [1-6] for integration on a sphere. The original
1556chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
1557chvd translated into fortran by Dr. Christoph van Wuellen.
1558chvd This subroutine was translated using a C to fortran77 conversion
1559chvd tool written by Dr. Christoph van Wuellen.
1560chvd
1561chvd Users of this code are asked to include reference [1] in their
1562chvd publications, and in the user- and programmers-manuals
1563chvd describing their codes.
1564chvd
1565chvd This code was distributed through CCL (http://wtempwtempwtemp.ccl.net/).
1566chvd
1567chvd [1] V.I. Lebedev, and D.N. Laikov
1568chvd "A quadrature formula for the sphere of the 131st
1569chvd algebraic order of accuracy"
1570chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
1571chvd
1572chvd [2] V.I. Lebedev
1573chvd "A quadrature formula for the sphere of 59th algebraic
1574chvd order of accuracy"
1575chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
1576chvd
1577chvd [3] V.I. Lebedev, and A.L. Skorokhodov
1578chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
1579chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
1580chvd
1581chvd [4] V.I. Lebedev
1582chvd "Spherical quadrature formulas exact to orders 25-29"
1583chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
1584chvd
1585chvd [5] V.I. Lebedev
1586chvd "Quadratures on a sphere"
1587chvd Computational Mathematics and Mathematical Physics, Vol. 16,
1588chvd 1976, pp. 10-24.
1589chvd
1590chvd [6] V.I. Lebedev
1591chvd "Values of the nodes and weights of ninth to seventeenth
1592chvd order Gauss-Markov quadrature formulae invariant under the
1593chvd octahedron group with inversion"
1594chvd Computational Mathematics and Mathematical Physics, Vol. 15,
1595chvd 1975, pp. 44-51.
1596chvd
1597 n=1
1598 v=-0.1313769127326952d-2
1599 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
1600 v=-0.2522728704859336d-2
1601 Call gen_oh( 2, n, x(n), y(n), z(n), w(n), a, b, v)
1602 v=0.4186853881700583d-2
1603 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
1604 a=0.7039373391585475d+0
1605 v=0.5315167977810885d-2
1606 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1607 a=0.1012526248572414d+0
1608 v=0.4047142377086219d-2
1609 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1610 a=0.4647448726420539d+0
1611 v=0.4112482394406990d-2
1612 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1613 a=0.3277420654971629d+0
1614 v=0.3595584899758782d-2
1615 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1616 a=0.6620338663699974d+0
1617 v=0.4256131351428158d-2
1618 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1619 a=0.8506508083520399d+0
1620 v=0.4229582700647240d-2
1621 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
1622 a=0.3233484542692899d+0
1623 b=0.1153112011009701d+0
1624 v=0.4080914225780505d-2
1625 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
1626 a=0.2314790158712601d+0
1627 b=0.5244939240922365d+0
1628 v=0.4071467593830964d-2
1629 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
1630 n=n-1
1631 RETURN
1632 END
1633 SUBROUTINE ld0302(X,Y,Z,W,N)
1634 real*8 x( 302)
1635 real*8 y( 302)
1636 real*8 z( 302)
1637 real*8 w( 302)
1638 INTEGER N
1639 DOUBLE PRECISION A,B,V
1640CVW
1641CVW LEBEDEV 302-POINT ANGULAR GRID
1642CVW
1643chvd
1644chvd This subroutine is part of a set of subroutines that generate
1645chvd Lebedev grids [1-6] for integration on a sphere. The original
1646chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
1647chvd translated into fortran by Dr. Christoph van Wuellen.
1648chvd This subroutine was translated using a C to fortran77 conversion
1649chvd tool written by Dr. Christoph van Wuellen.
1650chvd
1651chvd Users of this code are asked to include reference [1] in their
1652chvd publications, and in the user- and programmers-manuals
1653chvd describing their codes.
1654chvd
1655chvd This code was distributed through CCL (http://wtempwtempwtemp.ccl.net/).
1656chvd
1657chvd [1] V.I. Lebedev, and D.N. Laikov
1658chvd "A quadrature formula for the sphere of the 131st
1659chvd algebraic order of accuracy"
1660chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
1661chvd
1662chvd [2] V.I. Lebedev
1663chvd "A quadrature formula for the sphere of 59th algebraic
1664chvd order of accuracy"
1665chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
1666chvd
1667chvd [3] V.I. Lebedev, and A.L. Skorokhodov
1668chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
1669chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
1670chvd
1671chvd [4] V.I. Lebedev
1672chvd "Spherical quadrature formulas exact to orders 25-29"
1673chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
1674chvd
1675chvd [5] V.I. Lebedev
1676chvd "Quadratures on a sphere"
1677chvd Computational Mathematics and Mathematical Physics, Vol. 16,
1678chvd 1976, pp. 10-24.
1679chvd
1680chvd [6] V.I. Lebedev
1681chvd "Values of the nodes and weights of ninth to seventeenth
1682chvd order Gauss-Markov quadrature formulae invariant under the
1683chvd octahedron group with inversion"
1684chvd Computational Mathematics and Mathematical Physics, Vol. 15,
1685chvd 1975, pp. 44-51.
1686chvd
1687 n=1
1688 v=0.8545911725128148d-3
1689 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
1690 v=0.3599119285025571d-2
1691 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
1692 a=0.3515640345570105d+0
1693 v=0.3449788424305883d-2
1694 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1695 a=0.6566329410219612d+0
1696 v=0.3604822601419882d-2
1697 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1698 a=0.4729054132581005d+0
1699 v=0.3576729661743367d-2
1700 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1701 a=0.9618308522614784d-1
1702 v=0.2352101413689164d-2
1703 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1704 a=0.2219645236294178d+0
1705 v=0.3108953122413675d-2
1706 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1707 a=0.7011766416089545d+0
1708 v=0.3650045807677255d-2
1709 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1710 a=0.2644152887060663d+0
1711 v=0.2982344963171804d-2
1712 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
1713 a=0.5718955891878961d+0
1714 v=0.3600820932216460d-2
1715 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
1716 a=0.2510034751770465d+0
1717 b=0.8000727494073952d+0
1718 v=0.3571540554273387d-2
1719 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
1720 a=0.1233548532583327d+0
1721 b=0.4127724083168531d+0
1722 v=0.3392312205006170d-2
1723 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
1724 n=n-1
1725 RETURN
1726 END
1727 SUBROUTINE ld0350(X,Y,Z,W,N)
1728 real*8 x( 350)
1729 real*8 y( 350)
1730 real*8 z( 350)
1731 real*8 w( 350)
1732 INTEGER N
1733 DOUBLE PRECISION A,B,V
1734CVW
1735CVW LEBEDEV 350-POINT ANGULAR GRID
1736CVW
1737chvd
1738chvd This subroutine is part of a set of subroutines that generate
1739chvd Lebedev grids [1-6] for integration on a sphere. The original
1740chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
1741chvd translated into fortran by Dr. Christoph van Wuellen.
1742chvd This subroutine was translated using a C to fortran77 conversion
1743chvd tool written by Dr. Christoph van Wuellen.
1744chvd
1745chvd Users of this code are asked to include reference [1] in their
1746chvd publications, and in the user- and programmers-manuals
1747chvd describing their codes.
1748chvd
1749chvd This code was distributed through CCL (http://wtempwtempwtemp.ccl.net/).
1750chvd
1751chvd [1] V.I. Lebedev, and D.N. Laikov
1752chvd "A quadrature formula for the sphere of the 131st
1753chvd algebraic order of accuracy"
1754chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
1755chvd
1756chvd [2] V.I. Lebedev
1757chvd "A quadrature formula for the sphere of 59th algebraic
1758chvd order of accuracy"
1759chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
1760chvd
1761chvd [3] V.I. Lebedev, and A.L. Skorokhodov
1762chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
1763chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
1764chvd
1765chvd [4] V.I. Lebedev
1766chvd "Spherical quadrature formulas exact to orders 25-29"
1767chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
1768chvd
1769chvd [5] V.I. Lebedev
1770chvd "Quadratures on a sphere"
1771chvd Computational Mathematics and Mathematical Physics, Vol. 16,
1772chvd 1976, pp. 10-24.
1773chvd
1774chvd [6] V.I. Lebedev
1775chvd "Values of the nodes and weights of ninth to seventeenth
1776chvd order Gauss-Markov quadrature formulae invariant under the
1777chvd octahedron group with inversion"
1778chvd Computational Mathematics and Mathematical Physics, Vol. 15,
1779chvd 1975, pp. 44-51.
1780chvd
1781 n=1
1782 v=0.3006796749453936d-2
1783 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
1784 v=0.3050627745650771d-2
1785 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
1786 a=0.7068965463912316d+0
1787 v=0.1621104600288991d-2
1788 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1789 a=0.4794682625712025d+0
1790 v=0.3005701484901752d-2
1791 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1792 a=0.1927533154878019d+0
1793 v=0.2990992529653774d-2
1794 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1795 a=0.6930357961327123d+0
1796 v=0.2982170644107595d-2
1797 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1798 a=0.3608302115520091d+0
1799 v=0.2721564237310992d-2
1800 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1801 a=0.6498486161496169d+0
1802 v=0.3033513795811141d-2
1803 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1804 a=0.1932945013230339d+0
1805 v=0.3007949555218533d-2
1806 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
1807 a=0.3800494919899303d+0
1808 v=0.2881964603055307d-2
1809 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
1810 a=0.2899558825499574d+0
1811 b=0.7934537856582316d+0
1812 v=0.2958357626535696d-2
1813 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
1814 a=0.9684121455103957d-1
1815 b=0.8280801506686862d+0
1816 v=0.3036020026407088d-2
1817 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
1818 a=0.1833434647041659d+0
1819 b=0.9074658265305127d+0
1820 v=0.2832187403926303d-2
1821 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
1822 n=n-1
1823 RETURN
1824 END
1825 SUBROUTINE ld0434(X,Y,Z,W,N)
1826 real*8 x( 434)
1827 real*8 y( 434)
1828 real*8 z( 434)
1829 real*8 w( 434)
1830 INTEGER N
1831 DOUBLE PRECISION A,B,V
1832CVW
1833CVW LEBEDEV 434-POINT ANGULAR GRID
1834CVW
1835chvd
1836chvd This subroutine is part of a set of subroutines that generate
1837chvd Lebedev grids [1-6] for integration on a sphere. The original
1838chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
1839chvd translated into fortran by Dr. Christoph van Wuellen.
1840chvd This subroutine was translated using a C to fortran77 conversion
1841chvd tool written by Dr. Christoph van Wuellen.
1842chvd
1843chvd Users of this code are asked to include reference [1] in their
1844chvd publications, and in the user- and programmers-manuals
1845chvd describing their codes.
1846chvd
1847chvd This code was distributed through CCL (http://wtempwtempwtemp.ccl.net/).
1848chvd
1849chvd [1] V.I. Lebedev, and D.N. Laikov
1850chvd "A quadrature formula for the sphere of the 131st
1851chvd algebraic order of accuracy"
1852chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
1853chvd
1854chvd [2] V.I. Lebedev
1855chvd "A quadrature formula for the sphere of 59th algebraic
1856chvd order of accuracy"
1857chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
1858chvd
1859chvd [3] V.I. Lebedev, and A.L. Skorokhodov
1860chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
1861chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
1862chvd
1863chvd [4] V.I. Lebedev
1864chvd "Spherical quadrature formulas exact to orders 25-29"
1865chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
1866chvd
1867chvd [5] V.I. Lebedev
1868chvd "Quadratures on a sphere"
1869chvd Computational Mathematics and Mathematical Physics, Vol. 16,
1870chvd 1976, pp. 10-24.
1871chvd
1872chvd [6] V.I. Lebedev
1873chvd "Values of the nodes and weights of ninth to seventeenth
1874chvd order Gauss-Markov quadrature formulae invariant under the
1875chvd octahedron group with inversion"
1876chvd Computational Mathematics and Mathematical Physics, Vol. 15,
1877chvd 1975, pp. 44-51.
1878chvd
1879 n=1
1880 v=0.5265897968224436d-3
1881 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
1882 v=0.2548219972002607d-2
1883 Call gen_oh( 2, n, x(n), y(n), z(n), w(n), a, b, v)
1884 v=0.2512317418927307d-2
1885 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
1886 a=0.6909346307509111d+0
1887 v=0.2530403801186355d-2
1888 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1889 a=0.1774836054609158d+0
1890 v=0.2014279020918528d-2
1891 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1892 a=0.4914342637784746d+0
1893 v=0.2501725168402936d-2
1894 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1895 a=0.6456664707424256d+0
1896 v=0.2513267174597564d-2
1897 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1898 a=0.2861289010307638d+0
1899 v=0.2302694782227416d-2
1900 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1901 a=0.7568084367178018d-1
1902 v=0.1462495621594614d-2
1903 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1904 a=0.3927259763368002d+0
1905 v=0.2445373437312980d-2
1906 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1907 a=0.8818132877794288d+0
1908 v=0.2417442375638981d-2
1909 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
1910 a=0.9776428111182649d+0
1911 v=0.1910951282179532d-2
1912 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
1913 a=0.2054823696403044d+0
1914 b=0.8689460322872412d+0
1915 v=0.2416930044324775d-2
1916 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
1917 a=0.5905157048925271d+0
1918 b=0.7999278543857286d+0
1919 v=0.2512236854563495d-2
1920 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
1921 a=0.5550152361076807d+0
1922 b=0.7717462626915901d+0
1923 v=0.2496644054553086d-2
1924 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
1925 a=0.9371809858553722d+0
1926 b=0.3344363145343455d+0
1927 v=0.2236607760437849d-2
1928 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
1929 n=n-1
1930 RETURN
1931 END
1932 SUBROUTINE ld0590(X,Y,Z,W,N)
1933 real*8 x( 590)
1934 real*8 y( 590)
1935 real*8 z( 590)
1936 real*8 w( 590)
1937 INTEGER N
1938 DOUBLE PRECISION A,B,V
1939CVW
1940CVW LEBEDEV 590-POINT ANGULAR GRID
1941CVW
1942chvd
1943chvd This subroutine is part of a set of subroutines that generate
1944chvd Lebedev grids [1-6] for integration on a sphere. The original
1945chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
1946chvd translated into fortran by Dr. Christoph van Wuellen.
1947chvd This subroutine was translated using a C to fortran77 conversion
1948chvd tool written by Dr. Christoph van Wuellen.
1949chvd
1950chvd Users of this code are asked to include reference [1] in their
1951chvd publications, and in the user- and programmers-manuals
1952chvd describing their codes.
1953chvd
1954chvd This code was distributed through CCL (http://wtempwtempwtemp.ccl.net/).
1955chvd
1956chvd [1] V.I. Lebedev, and D.N. Laikov
1957chvd "A quadrature formula for the sphere of the 131st
1958chvd algebraic order of accuracy"
1959chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
1960chvd
1961chvd [2] V.I. Lebedev
1962chvd "A quadrature formula for the sphere of 59th algebraic
1963chvd order of accuracy"
1964chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
1965chvd
1966chvd [3] V.I. Lebedev, and A.L. Skorokhodov
1967chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
1968chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
1969chvd
1970chvd [4] V.I. Lebedev
1971chvd "Spherical quadrature formulas exact to orders 25-29"
1972chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
1973chvd
1974chvd [5] V.I. Lebedev
1975chvd "Quadratures on a sphere"
1976chvd Computational Mathematics and Mathematical Physics, Vol. 16,
1977chvd 1976, pp. 10-24.
1978chvd
1979chvd [6] V.I. Lebedev
1980chvd "Values of the nodes and weights of ninth to seventeenth
1981chvd order Gauss-Markov quadrature formulae invariant under the
1982chvd octahedron group with inversion"
1983chvd Computational Mathematics and Mathematical Physics, Vol. 15,
1984chvd 1975, pp. 44-51.
1985chvd
1986 n=1
1987 v=0.3095121295306187d-3
1988 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
1989 v=0.1852379698597489d-2
1990 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
1991 a=0.7040954938227469d+0
1992 v=0.1871790639277744d-2
1993 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1994 a=0.6807744066455243d+0
1995 v=0.1858812585438317d-2
1996 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
1997 a=0.6372546939258752d+0
1998 v=0.1852028828296213d-2
1999 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2000 a=0.5044419707800358d+0
2001 v=0.1846715956151242d-2
2002 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2003 a=0.4215761784010967d+0
2004 v=0.1818471778162769d-2
2005 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2006 a=0.3317920736472123d+0
2007 v=0.1749564657281154d-2
2008 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2009 a=0.2384736701421887d+0
2010 v=0.1617210647254411d-2
2011 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2012 a=0.1459036449157763d+0
2013 v=0.1384737234851692d-2
2014 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2015 a=0.6095034115507196d-1
2016 v=0.9764331165051050d-3
2017 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2018 a=0.6116843442009876d+0
2019 v=0.1857161196774078d-2
2020 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
2021 a=0.3964755348199858d+0
2022 v=0.1705153996395864d-2
2023 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
2024 a=0.1724782009907724d+0
2025 v=0.1300321685886048d-2
2026 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
2027 a=0.5610263808622060d+0
2028 b=0.3518280927733519d+0
2029 v=0.1842866472905286d-2
2030 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2031 a=0.4742392842551980d+0
2032 b=0.2634716655937950d+0
2033 v=0.1802658934377451d-2
2034 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2035 a=0.5984126497885380d+0
2036 b=0.1816640840360209d+0
2037 v=0.1849830560443660d-2
2038 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2039 a=0.3791035407695563d+0
2040 b=0.1720795225656878d+0
2041 v=0.1713904507106709d-2
2042 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2043 a=0.2778673190586244d+0
2044 b=0.8213021581932511d-1
2045 v=0.1555213603396808d-2
2046 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2047 a=0.5033564271075117d+0
2048 b=0.8999205842074875d-1
2049 v=0.1802239128008525d-2
2050 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2051 n=n-1
2052 RETURN
2053 END
2054 SUBROUTINE ld0770(X,Y,Z,W,N)
2055 real*8 x( 770)
2056 real*8 y( 770)
2057 real*8 z( 770)
2058 real*8 w( 770)
2059 INTEGER N
2060 DOUBLE PRECISION A,B,V
2061CVW
2062CVW LEBEDEV 770-POINT ANGULAR GRID
2063CVW
2064chvd
2065chvd This subroutine is part of a set of subroutines that generate
2066chvd Lebedev grids [1-6] for integration on a sphere. The original
2067chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
2068chvd translated into fortran by Dr. Christoph van Wuellen.
2069chvd This subroutine was translated using a C to fortran77 conversion
2070chvd tool written by Dr. Christoph van Wuellen.
2071chvd
2072chvd Users of this code are asked to include reference [1] in their
2073chvd publications, and in the user- and programmers-manuals
2074chvd describing their codes.
2075chvd
2076chvd This code was distributed through CCL (http://wtempwtempwtemp.ccl.net/).
2077chvd
2078chvd [1] V.I. Lebedev, and D.N. Laikov
2079chvd "A quadrature formula for the sphere of the 131st
2080chvd algebraic order of accuracy"
2081chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
2082chvd
2083chvd [2] V.I. Lebedev
2084chvd "A quadrature formula for the sphere of 59th algebraic
2085chvd order of accuracy"
2086chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
2087chvd
2088chvd [3] V.I. Lebedev, and A.L. Skorokhodov
2089chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
2090chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
2091chvd
2092chvd [4] V.I. Lebedev
2093chvd "Spherical quadrature formulas exact to orders 25-29"
2094chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
2095chvd
2096chvd [5] V.I. Lebedev
2097chvd "Quadratures on a sphere"
2098chvd Computational Mathematics and Mathematical Physics, Vol. 16,
2099chvd 1976, pp. 10-24.
2100chvd
2101chvd [6] V.I. Lebedev
2102chvd "Values of the nodes and weights of ninth to seventeenth
2103chvd order Gauss-Markov quadrature formulae invariant under the
2104chvd octahedron group with inversion"
2105chvd Computational Mathematics and Mathematical Physics, Vol. 15,
2106chvd 1975, pp. 44-51.
2107chvd
2108 n=1
2109 v=0.2192942088181184d-3
2110 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
2111 v=0.1436433617319080d-2
2112 Call gen_oh( 2, n, x(n), y(n), z(n), w(n), a, b, v)
2113 v=0.1421940344335877d-2
2114 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
2115 a=0.5087204410502360d-1
2116 v=0.6798123511050502d-3
2117 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2118 a=0.1228198790178831d+0
2119 v=0.9913184235294912d-3
2120 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2121 a=0.2026890814408786d+0
2122 v=0.1180207833238949d-2
2123 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2124 a=0.2847745156464294d+0
2125 v=0.1296599602080921d-2
2126 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2127 a=0.3656719078978026d+0
2128 v=0.1365871427428316d-2
2129 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2130 a=0.4428264886713469d+0
2131 v=0.1402988604775325d-2
2132 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2133 a=0.5140619627249735d+0
2134 v=0.1418645563595609d-2
2135 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2136 a=0.6306401219166803d+0
2137 v=0.1421376741851662d-2
2138 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2139 a=0.6716883332022612d+0
2140 v=0.1423996475490962d-2
2141 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2142 a=0.6979792685336881d+0
2143 v=0.1431554042178567d-2
2144 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2145 a=0.1446865674195309d+0
2146 v=0.9254401499865368d-3
2147 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
2148 a=0.3390263475411216d+0
2149 v=0.1250239995053509d-2
2150 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
2151 a=0.5335804651263506d+0
2152 v=0.1394365843329230d-2
2153 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
2154 a=0.6944024393349413d-1
2155 b=0.2355187894242326d+0
2156 v=0.1127089094671749d-2
2157 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2158 a=0.2269004109529460d+0
2159 b=0.4102182474045730d+0
2160 v=0.1345753760910670d-2
2161 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2162 a=0.8025574607775339d-1
2163 b=0.6214302417481605d+0
2164 v=0.1424957283316783d-2
2165 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2166 a=0.1467999527896572d+0
2167 b=0.3245284345717394d+0
2168 v=0.1261523341237750d-2
2169 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2170 a=0.1571507769824727d+0
2171 b=0.5224482189696630d+0
2172 v=0.1392547106052696d-2
2173 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2174 a=0.2365702993157246d+0
2175 b=0.6017546634089558d+0
2176 v=0.1418761677877656d-2
2177 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2178 a=0.7714815866765732d-1
2179 b=0.4346575516141163d+0
2180 v=0.1338366684479554d-2
2181 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2182 a=0.3062936666210730d+0
2183 b=0.4908826589037616d+0
2184 v=0.1393700862676131d-2
2185 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2186 a=0.3822477379524787d+0
2187 b=0.5648768149099500d+0
2188 v=0.1415914757466932d-2
2189 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2190 n=n-1
2191 RETURN
2192 END
2193 SUBROUTINE ld0974(X,Y,Z,W,N)
2194 real*8 x( 974)
2195 real*8 y( 974)
2196 real*8 z( 974)
2197 real*8 w( 974)
2198 INTEGER N
2199 DOUBLE PRECISION A,B,V
2200CVW
2201CVW LEBEDEV 974-POINT ANGULAR GRID
2202CVW
2203chvd
2204chvd This subroutine is part of a set of subroutines that generate
2205chvd Lebedev grids [1-6] for integration on a sphere. The original
2206chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
2207chvd translated into fortran by Dr. Christoph van Wuellen.
2208chvd This subroutine was translated using a C to fortran77 conversion
2209chvd tool written by Dr. Christoph van Wuellen.
2210chvd
2211chvd Users of this code are asked to include reference [1] in their
2212chvd publications, and in the user- and programmers-manuals
2213chvd describing their codes.
2214chvd
2215chvd This code was distributed through CCL (http://wtempwtempwtemp.ccl.net/).
2216chvd
2217chvd [1] V.I. Lebedev, and D.N. Laikov
2218chvd "A quadrature formula for the sphere of the 131st
2219chvd algebraic order of accuracy"
2220chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
2221chvd
2222chvd [2] V.I. Lebedev
2223chvd "A quadrature formula for the sphere of 59th algebraic
2224chvd order of accuracy"
2225chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
2226chvd
2227chvd [3] V.I. Lebedev, and A.L. Skorokhodov
2228chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
2229chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
2230chvd
2231chvd [4] V.I. Lebedev
2232chvd "Spherical quadrature formulas exact to orders 25-29"
2233chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
2234chvd
2235chvd [5] V.I. Lebedev
2236chvd "Quadratures on a sphere"
2237chvd Computational Mathematics and Mathematical Physics, Vol. 16,
2238chvd 1976, pp. 10-24.
2239chvd
2240chvd [6] V.I. Lebedev
2241chvd "Values of the nodes and weights of ninth to seventeenth
2242chvd order Gauss-Markov quadrature formulae invariant under the
2243chvd octahedron group with inversion"
2244chvd Computational Mathematics and Mathematical Physics, Vol. 15,
2245chvd 1975, pp. 44-51.
2246chvd
2247 n=1
2248 v=0.1438294190527431d-3
2249 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
2250 v=0.1125772288287004d-2
2251 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
2252 a=0.4292963545341347d-1
2253 v=0.4948029341949241d-3
2254 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2255 a=0.1051426854086404d+0
2256 v=0.7357990109125470d-3
2257 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2258 a=0.1750024867623087d+0
2259 v=0.8889132771304384d-3
2260 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2261 a=0.2477653379650257d+0
2262 v=0.9888347838921435d-3
2263 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2264 a=0.3206567123955957d+0
2265 v=0.1053299681709471d-2
2266 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2267 a=0.3916520749849983d+0
2268 v=0.1092778807014578d-2
2269 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2270 a=0.4590825874187624d+0
2271 v=0.1114389394063227d-2
2272 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2273 a=0.5214563888415861d+0
2274 v=0.1123724788051555d-2
2275 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2276 a=0.6253170244654199d+0
2277 v=0.1125239325243814d-2
2278 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2279 a=0.6637926744523170d+0
2280 v=0.1126153271815905d-2
2281 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2282 a=0.6910410398498301d+0
2283 v=0.1130286931123841d-2
2284 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2285 a=0.7052907007457760d+0
2286 v=0.1134986534363955d-2
2287 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2288 a=0.1236686762657990d+0
2289 v=0.6823367927109931d-3
2290 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
2291 a=0.2940777114468387d+0
2292 v=0.9454158160447096d-3
2293 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
2294 a=0.4697753849207649d+0
2295 v=0.1074429975385679d-2
2296 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
2297 a=0.6334563241139567d+0
2298 v=0.1129300086569132d-2
2299 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
2300 a=0.5974048614181342d-1
2301 b=0.2029128752777523d+0
2302 v=0.8436884500901954d-3
2303 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2304 a=0.1375760408473636d+0
2305 b=0.4602621942484054d+0
2306 v=0.1075255720448885d-2
2307 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2308 a=0.3391016526336286d+0
2309 b=0.5030673999662036d+0
2310 v=0.1108577236864462d-2
2311 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2312 a=0.1271675191439820d+0
2313 b=0.2817606422442134d+0
2314 v=0.9566475323783357d-3
2315 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2316 a=0.2693120740413512d+0
2317 b=0.4331561291720157d+0
2318 v=0.1080663250717391d-2
2319 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2320 a=0.1419786452601918d+0
2321 b=0.6256167358580814d+0
2322 v=0.1126797131196295d-2
2323 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2324 a=0.6709284600738255d-1
2325 b=0.3798395216859157d+0
2326 v=0.1022568715358061d-2
2327 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2328 a=0.7057738183256172d-1
2329 b=0.5517505421423520d+0
2330 v=0.1108960267713108d-2
2331 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2332 a=0.2783888477882155d+0
2333 b=0.6029619156159187d+0
2334 v=0.1122790653435766d-2
2335 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2336 a=0.1979578938917407d+0
2337 b=0.3589606329589096d+0
2338 v=0.1032401847117460d-2
2339 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2340 a=0.2087307061103274d+0
2341 b=0.5348666438135476d+0
2342 v=0.1107249382283854d-2
2343 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2344 a=0.4055122137872836d+0
2345 b=0.5674997546074373d+0
2346 v=0.1121780048519972d-2
2347 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2348 n=n-1
2349 RETURN
2350 END
2351 SUBROUTINE ld1202(X,Y,Z,W,N)
2352 real*8 x(1202)
2353 real*8 y(1202)
2354 real*8 z(1202)
2355 real*8 w(1202)
2356 INTEGER N
2357 DOUBLE PRECISION A,B,V
2358CVW
2359CVW LEBEDEV 1202-POINT ANGULAR GRID
2360CVW
2361chvd
2362chvd This subroutine is part of a set of subroutines that generate
2363chvd Lebedev grids [1-6] for integration on a sphere. The original
2364chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
2365chvd translated into fortran by Dr. Christoph van Wuellen.
2366chvd This subroutine was translated using a C to fortran77 conversion
2367chvd tool written by Dr. Christoph van Wuellen.
2368chvd
2369chvd Users of this code are asked to include reference [1] in their
2370chvd publications, and in the user- and programmers-manuals
2371chvd describing their codes.
2372chvd
2373chvd This code was distributed through CCL (http://wtempwtempwtemp.ccl.net/).
2374chvd
2375chvd [1] V.I. Lebedev, and D.N. Laikov
2376chvd "A quadrature formula for the sphere of the 131st
2377chvd algebraic order of accuracy"
2378chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
2379chvd
2380chvd [2] V.I. Lebedev
2381chvd "A quadrature formula for the sphere of 59th algebraic
2382chvd order of accuracy"
2383chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
2384chvd
2385chvd [3] V.I. Lebedev, and A.L. Skorokhodov
2386chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
2387chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
2388chvd
2389chvd [4] V.I. Lebedev
2390chvd "Spherical quadrature formulas exact to orders 25-29"
2391chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
2392chvd
2393chvd [5] V.I. Lebedev
2394chvd "Quadratures on a sphere"
2395chvd Computational Mathematics and Mathematical Physics, Vol. 16,
2396chvd 1976, pp. 10-24.
2397chvd
2398chvd [6] V.I. Lebedev
2399chvd "Values of the nodes and weights of ninth to seventeenth
2400chvd order Gauss-Markov quadrature formulae invariant under the
2401chvd octahedron group with inversion"
2402chvd Computational Mathematics and Mathematical Physics, Vol. 15,
2403chvd 1975, pp. 44-51.
2404chvd
2405 n=1
2406 v=0.1105189233267572d-3
2407 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
2408 v=0.9205232738090741d-3
2409 Call gen_oh( 2, n, x(n), y(n), z(n), w(n), a, b, v)
2410 v=0.9133159786443561d-3
2411 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
2412 a=0.3712636449657089d-1
2413 v=0.3690421898017899d-3
2414 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2415 a=0.9140060412262223d-1
2416 v=0.5603990928680660d-3
2417 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2418 a=0.1531077852469906d+0
2419 v=0.6865297629282609d-3
2420 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2421 a=0.2180928891660612d+0
2422 v=0.7720338551145630d-3
2423 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2424 a=0.2839874532200175d+0
2425 v=0.8301545958894795d-3
2426 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2427 a=0.3491177600963764d+0
2428 v=0.8686692550179628d-3
2429 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2430 a=0.4121431461444309d+0
2431 v=0.8927076285846890d-3
2432 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2433 a=0.4718993627149127d+0
2434 v=0.9060820238568219d-3
2435 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2436 a=0.5273145452842337d+0
2437 v=0.9119777254940867d-3
2438 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2439 a=0.6209475332444019d+0
2440 v=0.9128720138604181d-3
2441 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2442 a=0.6569722711857291d+0
2443 v=0.9130714935691735d-3
2444 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2445 a=0.6841788309070143d+0
2446 v=0.9152873784554116d-3
2447 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2448 a=0.7012604330123631d+0
2449 v=0.9187436274321654d-3
2450 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2451 a=0.1072382215478166d+0
2452 v=0.5176977312965694d-3
2453 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
2454 a=0.2582068959496968d+0
2455 v=0.7331143682101417d-3
2456 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
2457 a=0.4172752955306717d+0
2458 v=0.8463232836379928d-3
2459 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
2460 a=0.5700366911792503d+0
2461 v=0.9031122694253992d-3
2462 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
2463 a=0.9827986018263947d+0
2464 b=0.1771774022615325d+0
2465 v=0.6485778453163257d-3
2466 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2467 a=0.9624249230326228d+0
2468 b=0.2475716463426288d+0
2469 v=0.7435030910982369d-3
2470 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2471 a=0.9402007994128811d+0
2472 b=0.3354616289066489d+0
2473 v=0.7998527891839054d-3
2474 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2475 a=0.9320822040143202d+0
2476 b=0.3173615246611977d+0
2477 v=0.8101731497468018d-3
2478 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2479 a=0.9043674199393299d+0
2480 b=0.4090268427085357d+0
2481 v=0.8483389574594331d-3
2482 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2483 a=0.8912407560074747d+0
2484 b=0.3854291150669224d+0
2485 v=0.8556299257311812d-3
2486 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2487 a=0.8676435628462708d+0
2488 b=0.4932221184851285d+0
2489 v=0.8803208679738260d-3
2490 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2491 a=0.8581979986041619d+0
2492 b=0.4785320675922435d+0
2493 v=0.8811048182425720d-3
2494 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2495 a=0.8396753624049856d+0
2496 b=0.4507422593157064d+0
2497 v=0.8850282341265444d-3
2498 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2499 a=0.8165288564022188d+0
2500 b=0.5632123020762100d+0
2501 v=0.9021342299040653d-3
2502 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2503 a=0.8015469370783529d+0
2504 b=0.5434303569693900d+0
2505 v=0.9010091677105086d-3
2506 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2507 a=0.7773563069070351d+0
2508 b=0.5123518486419871d+0
2509 v=0.9022692938426915d-3
2510 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2511 a=0.7661621213900394d+0
2512 b=0.6394279634749102d+0
2513 v=0.9158016174693465d-3
2514 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2515 a=0.7553584143533510d+0
2516 b=0.6269805509024392d+0
2517 v=0.9131578003189435d-3
2518 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2519 a=0.7344305757559503d+0
2520 b=0.6031161693096310d+0
2521 v=0.9107813579482705d-3
2522 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2523 a=0.7043837184021765d+0
2524 b=0.5693702498468441d+0
2525 v=0.9105760258970126d-3
2526 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2527 n=n-1
2528 RETURN
2529 END
2530 SUBROUTINE ld1454(X,Y,Z,W,N)
2531 real*8 x(1454)
2532 real*8 y(1454)
2533 real*8 z(1454)
2534 real*8 w(1454)
2535 INTEGER N
2536 DOUBLE PRECISION A,B,V
2537CVW
2538CVW LEBEDEV 1454-POINT ANGULAR GRID
2539CVW
2540chvd
2541chvd This subroutine is part of a set of subroutines that generate
2542chvd Lebedev grids [1-6] for integration on a sphere. The original
2543chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
2544chvd translated into fortran by Dr. Christoph van Wuellen.
2545chvd This subroutine was translated using a C to fortran77 conversion
2546chvd tool written by Dr. Christoph van Wuellen.
2547chvd
2548chvd Users of this code are asked to include reference [1] in their
2549chvd publications, and in the user- and programmers-manuals
2550chvd describing their codes.
2551chvd
2552chvd This code was distributed through CCL (http://wtempwtempwtemp.ccl.net/).
2553chvd
2554chvd [1] V.I. Lebedev, and D.N. Laikov
2555chvd "A quadrature formula for the sphere of the 131st
2556chvd algebraic order of accuracy"
2557chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
2558chvd
2559chvd [2] V.I. Lebedev
2560chvd "A quadrature formula for the sphere of 59th algebraic
2561chvd order of accuracy"
2562chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
2563chvd
2564chvd [3] V.I. Lebedev, and A.L. Skorokhodov
2565chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
2566chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
2567chvd
2568chvd [4] V.I. Lebedev
2569chvd "Spherical quadrature formulas exact to orders 25-29"
2570chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
2571chvd
2572chvd [5] V.I. Lebedev
2573chvd "Quadratures on a sphere"
2574chvd Computational Mathematics and Mathematical Physics, Vol. 16,
2575chvd 1976, pp. 10-24.
2576chvd
2577chvd [6] V.I. Lebedev
2578chvd "Values of the nodes and weights of ninth to seventeenth
2579chvd order Gauss-Markov quadrature formulae invariant under the
2580chvd octahedron group with inversion"
2581chvd Computational Mathematics and Mathematical Physics, Vol. 15,
2582chvd 1975, pp. 44-51.
2583chvd
2584 n=1
2585 v=0.7777160743261247d-4
2586 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
2587 v=0.7557646413004701d-3
2588 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
2589 a=0.3229290663413854d-1
2590 v=0.2841633806090617d-3
2591 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2592 a=0.8036733271462222d-1
2593 v=0.4374419127053555d-3
2594 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2595 a=0.1354289960531653d+0
2596 v=0.5417174740872172d-3
2597 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2598 a=0.1938963861114426d+0
2599 v=0.6148000891358593d-3
2600 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2601 a=0.2537343715011275d+0
2602 v=0.6664394485800705d-3
2603 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2604 a=0.3135251434752570d+0
2605 v=0.7025039356923220d-3
2606 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2607 a=0.3721558339375338d+0
2608 v=0.7268511789249627d-3
2609 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2610 a=0.4286809575195696d+0
2611 v=0.7422637534208629d-3
2612 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2613 a=0.4822510128282994d+0
2614 v=0.7509545035841214d-3
2615 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2616 a=0.5320679333566263d+0
2617 v=0.7548535057718401d-3
2618 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2619 a=0.6172998195394274d+0
2620 v=0.7554088969774001d-3
2621 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2622 a=0.6510679849127481d+0
2623 v=0.7553147174442808d-3
2624 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2625 a=0.6777315251687360d+0
2626 v=0.7564767653292297d-3
2627 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2628 a=0.6963109410648741d+0
2629 v=0.7587991808518730d-3
2630 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2631 a=0.7058935009831749d+0
2632 v=0.7608261832033027d-3
2633 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2634 a=0.9955546194091857d+0
2635 v=0.4021680447874916d-3
2636 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
2637 a=0.9734115901794209d+0
2638 v=0.5804871793945964d-3
2639 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
2640 a=0.9275693732388626d+0
2641 v=0.6792151955945159d-3
2642 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
2643 a=0.8568022422795103d+0
2644 v=0.7336741211286294d-3
2645 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
2646 a=0.7623495553719372d+0
2647 v=0.7581866300989608d-3
2648 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
2649 a=0.5707522908892223d+0
2650 b=0.4387028039889501d+0
2651 v=0.7538257859800743d-3
2652 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2653 a=0.5196463388403083d+0
2654 b=0.3858908414762617d+0
2655 v=0.7483517247053123d-3
2656 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2657 a=0.4646337531215351d+0
2658 b=0.3301937372343854d+0
2659 v=0.7371763661112059d-3
2660 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2661 a=0.4063901697557691d+0
2662 b=0.2725423573563777d+0
2663 v=0.7183448895756934d-3
2664 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2665 a=0.3456329466643087d+0
2666 b=0.2139510237495250d+0
2667 v=0.6895815529822191d-3
2668 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2669 a=0.2831395121050332d+0
2670 b=0.1555922309786647d+0
2671 v=0.6480105801792886d-3
2672 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2673 a=0.2197682022925330d+0
2674 b=0.9892878979686097d-1
2675 v=0.5897558896594636d-3
2676 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2677 a=0.1564696098650355d+0
2678 b=0.4598642910675510d-1
2679 v=0.5095708849247346d-3
2680 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2681 a=0.6027356673721295d+0
2682 b=0.3376625140173426d+0
2683 v=0.7536906428909755d-3
2684 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2685 a=0.5496032320255096d+0
2686 b=0.2822301309727988d+0
2687 v=0.7472505965575118d-3
2688 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2689 a=0.4921707755234567d+0
2690 b=0.2248632342592540d+0
2691 v=0.7343017132279698d-3
2692 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2693 a=0.4309422998598483d+0
2694 b=0.1666224723456479d+0
2695 v=0.7130871582177445d-3
2696 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2697 a=0.3664108182313672d+0
2698 b=0.1086964901822169d+0
2699 v=0.6817022032112776d-3
2700 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2701 a=0.2990189057758436d+0
2702 b=0.5251989784120085d-1
2703 v=0.6380941145604121d-3
2704 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2705 a=0.6268724013144998d+0
2706 b=0.2297523657550023d+0
2707 v=0.7550381377920310d-3
2708 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2709 a=0.5707324144834607d+0
2710 b=0.1723080607093800d+0
2711 v=0.7478646640144802d-3
2712 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2713 a=0.5096360901960365d+0
2714 b=0.1140238465390513d+0
2715 v=0.7335918720601220d-3
2716 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2717 a=0.4438729938312456d+0
2718 b=0.5611522095882537d-1
2719 v=0.7110120527658118d-3
2720 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2721 a=0.6419978471082389d+0
2722 b=0.1164174423140873d+0
2723 v=0.7571363978689501d-3
2724 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2725 a=0.5817218061802611d+0
2726 b=0.5797589531445219d-1
2727 v=0.7489908329079234d-3
2728 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2729 n=n-1
2730 RETURN
2731 END
2732 SUBROUTINE ld1730(X,Y,Z,W,N)
2733 real*8 x(1730)
2734 real*8 y(1730)
2735 real*8 z(1730)
2736 real*8 w(1730)
2737 INTEGER N
2738 DOUBLE PRECISION A,B,V
2739CVW
2740CVW LEBEDEV 1730-POINT ANGULAR GRID
2741CVW
2742chvd
2743chvd This subroutine is part of a set of subroutines that generate
2744chvd Lebedev grids [1-6] for integration on a sphere. The original
2745chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
2746chvd translated into fortran by Dr. Christoph van Wuellen.
2747chvd This subroutine was translated using a C to fortran77 conversion
2748chvd tool written by Dr. Christoph van Wuellen.
2749chvd
2750chvd Users of this code are asked to include reference [1] in their
2751chvd publications, and in the user- and programmers-manuals
2752chvd describing their codes.
2753chvd
2754chvd This code was distributed through CCL (http://wtempwtempwtemp.ccl.net/).
2755chvd
2756chvd [1] V.I. Lebedev, and D.N. Laikov
2757chvd "A quadrature formula for the sphere of the 131st
2758chvd algebraic order of accuracy"
2759chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
2760chvd
2761chvd [2] V.I. Lebedev
2762chvd "A quadrature formula for the sphere of 59th algebraic
2763chvd order of accuracy"
2764chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
2765chvd
2766chvd [3] V.I. Lebedev, and A.L. Skorokhodov
2767chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
2768chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
2769chvd
2770chvd [4] V.I. Lebedev
2771chvd "Spherical quadrature formulas exact to orders 25-29"
2772chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
2773chvd
2774chvd [5] V.I. Lebedev
2775chvd "Quadratures on a sphere"
2776chvd Computational Mathematics and Mathematical Physics, Vol. 16,
2777chvd 1976, pp. 10-24.
2778chvd
2779chvd [6] V.I. Lebedev
2780chvd "Values of the nodes and weights of ninth to seventeenth
2781chvd order Gauss-Markov quadrature formulae invariant under the
2782chvd octahedron group with inversion"
2783chvd Computational Mathematics and Mathematical Physics, Vol. 15,
2784chvd 1975, pp. 44-51.
2785chvd
2786 n=1
2787 v=0.6309049437420976d-4
2788 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
2789 v=0.6398287705571748d-3
2790 Call gen_oh( 2, n, x(n), y(n), z(n), w(n), a, b, v)
2791 v=0.6357185073530720d-3
2792 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
2793 a=0.2860923126194662d-1
2794 v=0.2221207162188168d-3
2795 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2796 a=0.7142556767711522d-1
2797 v=0.3475784022286848d-3
2798 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2799 a=0.1209199540995559d+0
2800 v=0.4350742443589804d-3
2801 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2802 a=0.1738673106594379d+0
2803 v=0.4978569136522127d-3
2804 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2805 a=0.2284645438467734d+0
2806 v=0.5435036221998053d-3
2807 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2808 a=0.2834807671701512d+0
2809 v=0.5765913388219542d-3
2810 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2811 a=0.3379680145467339d+0
2812 v=0.6001200359226003d-3
2813 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2814 a=0.3911355454819537d+0
2815 v=0.6162178172717512d-3
2816 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2817 a=0.4422860353001403d+0
2818 v=0.6265218152438485d-3
2819 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2820 a=0.4907781568726057d+0
2821 v=0.6323987160974212d-3
2822 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2823 a=0.5360006153211468d+0
2824 v=0.6350767851540569d-3
2825 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2826 a=0.6142105973596603d+0
2827 v=0.6354362775297107d-3
2828 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2829 a=0.6459300387977504d+0
2830 v=0.6352302462706235d-3
2831 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2832 a=0.6718056125089225d+0
2833 v=0.6358117881417972d-3
2834 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2835 a=0.6910888533186254d+0
2836 v=0.6373101590310117d-3
2837 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2838 a=0.7030467416823252d+0
2839 v=0.6390428961368665d-3
2840 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
2841 a=0.8354951166354646d-1
2842 v=0.3186913449946576d-3
2843 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
2844 a=0.2050143009099486d+0
2845 v=0.4678028558591711d-3
2846 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
2847 a=0.3370208290706637d+0
2848 v=0.5538829697598626d-3
2849 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
2850 a=0.4689051484233963d+0
2851 v=0.6044475907190476d-3
2852 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
2853 a=0.5939400424557334d+0
2854 v=0.6313575103509012d-3
2855 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
2856 a=0.1394983311832261d+0
2857 b=0.4097581162050343d-1
2858 v=0.4078626431855630d-3
2859 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2860 a=0.1967999180485014d+0
2861 b=0.8851987391293348d-1
2862 v=0.4759933057812725d-3
2863 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2864 a=0.2546183732548967d+0
2865 b=0.1397680182969819d+0
2866 v=0.5268151186413440d-3
2867 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2868 a=0.3121281074713875d+0
2869 b=0.1929452542226526d+0
2870 v=0.5643048560507316d-3
2871 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2872 a=0.3685981078502492d+0
2873 b=0.2467898337061562d+0
2874 v=0.5914501076613073d-3
2875 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2876 a=0.4233760321547856d+0
2877 b=0.3003104124785409d+0
2878 v=0.6104561257874195d-3
2879 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2880 a=0.4758671236059246d+0
2881 b=0.3526684328175033d+0
2882 v=0.6230252860707806d-3
2883 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2884 a=0.5255178579796463d+0
2885 b=0.4031134861145713d+0
2886 v=0.6305618761760796d-3
2887 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2888 a=0.5718025633734589d+0
2889 b=0.4509426448342351d+0
2890 v=0.6343092767597889d-3
2891 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2892 a=0.2686927772723415d+0
2893 b=0.4711322502423248d-1
2894 v=0.5176268945737826d-3
2895 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2896 a=0.3306006819904809d+0
2897 b=0.9784487303942695d-1
2898 v=0.5564840313313692d-3
2899 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2900 a=0.3904906850594983d+0
2901 b=0.1505395810025273d+0
2902 v=0.5856426671038980d-3
2903 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2904 a=0.4479957951904390d+0
2905 b=0.2039728156296050d+0
2906 v=0.6066386925777091d-3
2907 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2908 a=0.5027076848919780d+0
2909 b=0.2571529941121107d+0
2910 v=0.6208824962234458d-3
2911 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2912 a=0.5542087392260217d+0
2913 b=0.3092191375815670d+0
2914 v=0.6296314297822907d-3
2915 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2916 a=0.6020850887375187d+0
2917 b=0.3593807506130276d+0
2918 v=0.6340423756791859d-3
2919 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2920 a=0.4019851409179594d+0
2921 b=0.5063389934378671d-1
2922 v=0.5829627677107342d-3
2923 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2924 a=0.4635614567449800d+0
2925 b=0.1032422269160612d+0
2926 v=0.6048693376081110d-3
2927 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2928 a=0.5215860931591575d+0
2929 b=0.1566322094006254d+0
2930 v=0.6202362317732461d-3
2931 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2932 a=0.5758202499099271d+0
2933 b=0.2098082827491099d+0
2934 v=0.6299005328403779d-3
2935 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2936 a=0.6259893683876795d+0
2937 b=0.2618824114553391d+0
2938 v=0.6347722390609353d-3
2939 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2940 a=0.5313795124811891d+0
2941 b=0.5263245019338556d-1
2942 v=0.6203778981238834d-3
2943 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2944 a=0.5893317955931995d+0
2945 b=0.1061059730982005d+0
2946 v=0.6308414671239979d-3
2947 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2948 a=0.6426246321215801d+0
2949 b=0.1594171564034221d+0
2950 v=0.6362706466959498d-3
2951 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2952 a=0.6511904367376113d+0
2953 b=0.5354789536565540d-1
2954 v=0.6375414170333233d-3
2955 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
2956 n=n-1
2957 RETURN
2958 END
2959 SUBROUTINE ld2030(X,Y,Z,W,N)
2960 real*8 x(2030)
2961 real*8 y(2030)
2962 real*8 z(2030)
2963 real*8 w(2030)
2964 INTEGER N
2965 DOUBLE PRECISION A,B,V
2966CVW
2967CVW LEBEDEV 2030-POINT ANGULAR GRID
2968CVW
2969chvd
2970chvd This subroutine is part of a set of subroutines that generate
2971chvd Lebedev grids [1-6] for integration on a sphere. The original
2972chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
2973chvd translated into fortran by Dr. Christoph van Wuellen.
2974chvd This subroutine was translated using a C to fortran77 conversion
2975chvd tool written by Dr. Christoph van Wuellen.
2976chvd
2977chvd Users of this code are asked to include reference [1] in their
2978chvd publications, and in the user- and programmers-manuals
2979chvd describing their codes.
2980chvd
2981chvd This code was distributed through CCL (http://wtempwtempwtemp.ccl.net/).
2982chvd
2983chvd [1] V.I. Lebedev, and D.N. Laikov
2984chvd "A quadrature formula for the sphere of the 131st
2985chvd algebraic order of accuracy"
2986chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
2987chvd
2988chvd [2] V.I. Lebedev
2989chvd "A quadrature formula for the sphere of 59th algebraic
2990chvd order of accuracy"
2991chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
2992chvd
2993chvd [3] V.I. Lebedev, and A.L. Skorokhodov
2994chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
2995chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
2996chvd
2997chvd [4] V.I. Lebedev
2998chvd "Spherical quadrature formulas exact to orders 25-29"
2999chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
3000chvd
3001chvd [5] V.I. Lebedev
3002chvd "Quadratures on a sphere"
3003chvd Computational Mathematics and Mathematical Physics, Vol. 16,
3004chvd 1976, pp. 10-24.
3005chvd
3006chvd [6] V.I. Lebedev
3007chvd "Values of the nodes and weights of ninth to seventeenth
3008chvd order Gauss-Markov quadrature formulae invariant under the
3009chvd octahedron group with inversion"
3010chvd Computational Mathematics and Mathematical Physics, Vol. 15,
3011chvd 1975, pp. 44-51.
3012chvd
3013 n=1
3014 v=0.4656031899197431d-4
3015 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
3016 v=0.5421549195295507d-3
3017 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
3018 a=0.2540835336814348d-1
3019 v=0.1778522133346553d-3
3020 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3021 a=0.6399322800504915d-1
3022 v=0.2811325405682796d-3
3023 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3024 a=0.1088269469804125d+0
3025 v=0.3548896312631459d-3
3026 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3027 a=0.1570670798818287d+0
3028 v=0.4090310897173364d-3
3029 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3030 a=0.2071163932282514d+0
3031 v=0.4493286134169965d-3
3032 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3033 a=0.2578914044450844d+0
3034 v=0.4793728447962723d-3
3035 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3036 a=0.3085687558169623d+0
3037 v=0.5015415319164265d-3
3038 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3039 a=0.3584719706267024d+0
3040 v=0.5175127372677937d-3
3041 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3042 a=0.4070135594428709d+0
3043 v=0.5285522262081019d-3
3044 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3045 a=0.4536618626222638d+0
3046 v=0.5356832703713962d-3
3047 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3048 a=0.4979195686463577d+0
3049 v=0.5397914736175170d-3
3050 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3051 a=0.5393075111126999d+0
3052 v=0.5416899441599930d-3
3053 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3054 a=0.6115617676843916d+0
3055 v=0.5419308476889938d-3
3056 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3057 a=0.6414308435160159d+0
3058 v=0.5416936902030596d-3
3059 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3060 a=0.6664099412721607d+0
3061 v=0.5419544338703164d-3
3062 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3063 a=0.6859161771214913d+0
3064 v=0.5428983656630975d-3
3065 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3066 a=0.6993625593503890d+0
3067 v=0.5442286500098193d-3
3068 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3069 a=0.7062393387719380d+0
3070 v=0.5452250345057301d-3
3071 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3072 a=0.7479028168349763d-1
3073 v=0.2568002497728530d-3
3074 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3075 a=0.1848951153969366d+0
3076 v=0.3827211700292145d-3
3077 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3078 a=0.3059529066581305d+0
3079 v=0.4579491561917824d-3
3080 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3081 a=0.4285556101021362d+0
3082 v=0.5042003969083574d-3
3083 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3084 a=0.5468758653496526d+0
3085 v=0.5312708889976025d-3
3086 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3087 a=0.6565821978343439d+0
3088 v=0.5438401790747117d-3
3089 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3090 a=0.1253901572367117d+0
3091 b=0.3681917226439641d-1
3092 v=0.3316041873197344d-3
3093 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3094 a=0.1775721510383941d+0
3095 b=0.7982487607213301d-1
3096 v=0.3899113567153771d-3
3097 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3098 a=0.2305693358216114d+0
3099 b=0.1264640966592335d+0
3100 v=0.4343343327201309d-3
3101 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3102 a=0.2836502845992063d+0
3103 b=0.1751585683418957d+0
3104 v=0.4679415262318919d-3
3105 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3106 a=0.3361794746232590d+0
3107 b=0.2247995907632670d+0
3108 v=0.4930847981631031d-3
3109 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3110 a=0.3875979172264824d+0
3111 b=0.2745299257422246d+0
3112 v=0.5115031867540091d-3
3113 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3114 a=0.4374019316999074d+0
3115 b=0.3236373482441118d+0
3116 v=0.5245217148457367d-3
3117 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3118 a=0.4851275843340022d+0
3119 b=0.3714967859436741d+0
3120 v=0.5332041499895321d-3
3121 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3122 a=0.5303391803806868d+0
3123 b=0.4175353646321745d+0
3124 v=0.5384583126021542d-3
3125 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3126 a=0.5726197380596287d+0
3127 b=0.4612084406355461d+0
3128 v=0.5411067210798852d-3
3129 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3130 a=0.2431520732564863d+0
3131 b=0.4258040133043952d-1
3132 v=0.4259797391468714d-3
3133 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3134 a=0.3002096800895869d+0
3135 b=0.8869424306722721d-1
3136 v=0.4604931368460021d-3
3137 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3138 a=0.3558554457457432d+0
3139 b=0.1368811706510655d+0
3140 v=0.4871814878255202d-3
3141 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3142 a=0.4097782537048887d+0
3143 b=0.1860739985015033d+0
3144 v=0.5072242910074885d-3
3145 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3146 a=0.4616337666067458d+0
3147 b=0.2354235077395853d+0
3148 v=0.5217069845235350d-3
3149 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3150 a=0.5110707008417874d+0
3151 b=0.2842074921347011d+0
3152 v=0.5315785966280310d-3
3153 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3154 a=0.5577415286163795d+0
3155 b=0.3317784414984102d+0
3156 v=0.5376833708758905d-3
3157 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3158 a=0.6013060431366950d+0
3159 b=0.3775299002040700d+0
3160 v=0.5408032092069521d-3
3161 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3162 a=0.3661596767261781d+0
3163 b=0.4599367887164592d-1
3164 v=0.4842744917904866d-3
3165 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3166 a=0.4237633153506581d+0
3167 b=0.9404893773654421d-1
3168 v=0.5048926076188130d-3
3169 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3170 a=0.4786328454658452d+0
3171 b=0.1431377109091971d+0
3172 v=0.5202607980478373d-3
3173 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3174 a=0.5305702076789774d+0
3175 b=0.1924186388843570d+0
3176 v=0.5309932388325743d-3
3177 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3178 a=0.5793436224231788d+0
3179 b=0.2411590944775190d+0
3180 v=0.5377419770895208d-3
3181 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3182 a=0.6247069017094747d+0
3183 b=0.2886871491583605d+0
3184 v=0.5411696331677717d-3
3185 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3186 a=0.4874315552535204d+0
3187 b=0.4804978774953206d-1
3188 v=0.5197996293282420d-3
3189 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3190 a=0.5427337322059053d+0
3191 b=0.9716857199366665d-1
3192 v=0.5311120836622945d-3
3193 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3194 a=0.5943493747246700d+0
3195 b=0.1465205839795055d+0
3196 v=0.5384309319956951d-3
3197 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3198 a=0.6421314033564943d+0
3199 b=0.1953579449803574d+0
3200 v=0.5421859504051886d-3
3201 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3202 a=0.6020628374713980d+0
3203 b=0.4916375015738108d-1
3204 v=0.5390948355046314d-3
3205 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3206 a=0.6529222529856881d+0
3207 b=0.9861621540127005d-1
3208 v=0.5433312705027845d-3
3209 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3210 n=n-1
3211 RETURN
3212 END
3213 SUBROUTINE ld2354(X,Y,Z,W,N)
3214 real*8 x(2354)
3215 real*8 y(2354)
3216 real*8 z(2354)
3217 real*8 w(2354)
3218 INTEGER N
3219 DOUBLE PRECISION A,B,V
3220CVW
3221CVW LEBEDEV 2354-POINT ANGULAR GRID
3222CVW
3223chvd
3224chvd This subroutine is part of a set of subroutines that generate
3225chvd Lebedev grids [1-6] for integration on a sphere. The original
3226chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
3227chvd translated into fortran by Dr. Christoph van Wuellen.
3228chvd This subroutine was translated using a C to fortran77 conversion
3229chvd tool written by Dr. Christoph van Wuellen.
3230chvd
3231chvd Users of this code are asked to include reference [1] in their
3232chvd publications, and in the user- and programmers-manuals
3233chvd describing their codes.
3234chvd
3235chvd This code was distributed through CCL (http://wtempwtempwtemp.ccl.net/).
3236chvd
3237chvd [1] V.I. Lebedev, and D.N. Laikov
3238chvd "A quadrature formula for the sphere of the 131st
3239chvd algebraic order of accuracy"
3240chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
3241chvd
3242chvd [2] V.I. Lebedev
3243chvd "A quadrature formula for the sphere of 59th algebraic
3244chvd order of accuracy"
3245chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
3246chvd
3247chvd [3] V.I. Lebedev, and A.L. Skorokhodov
3248chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
3249chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
3250chvd
3251chvd [4] V.I. Lebedev
3252chvd "Spherical quadrature formulas exact to orders 25-29"
3253chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
3254chvd
3255chvd [5] V.I. Lebedev
3256chvd "Quadratures on a sphere"
3257chvd Computational Mathematics and Mathematical Physics, Vol. 16,
3258chvd 1976, pp. 10-24.
3259chvd
3260chvd [6] V.I. Lebedev
3261chvd "Values of the nodes and weights of ninth to seventeenth
3262chvd order Gauss-Markov quadrature formulae invariant under the
3263chvd octahedron group with inversion"
3264chvd Computational Mathematics and Mathematical Physics, Vol. 15,
3265chvd 1975, pp. 44-51.
3266chvd
3267 n=1
3268 v=0.3922616270665292d-4
3269 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
3270 v=0.4703831750854424d-3
3271 Call gen_oh( 2, n, x(n), y(n), z(n), w(n), a, b, v)
3272 v=0.4678202801282136d-3
3273 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
3274 a=0.2290024646530589d-1
3275 v=0.1437832228979900d-3
3276 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3277 a=0.5779086652271284d-1
3278 v=0.2303572493577644d-3
3279 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3280 a=0.9863103576375984d-1
3281 v=0.2933110752447454d-3
3282 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3283 a=0.1428155792982185d+0
3284 v=0.3402905998359838d-3
3285 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3286 a=0.1888978116601463d+0
3287 v=0.3759138466870372d-3
3288 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3289 a=0.2359091682970210d+0
3290 v=0.4030638447899798d-3
3291 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3292 a=0.2831228833706171d+0
3293 v=0.4236591432242211d-3
3294 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3295 a=0.3299495857966693d+0
3296 v=0.4390522656946746d-3
3297 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3298 a=0.3758840802660796d+0
3299 v=0.4502523466626247d-3
3300 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3301 a=0.4204751831009480d+0
3302 v=0.4580577727783541d-3
3303 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3304 a=0.4633068518751051d+0
3305 v=0.4631391616615899d-3
3306 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3307 a=0.5039849474507313d+0
3308 v=0.4660928953698676d-3
3309 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3310 a=0.5421265793440747d+0
3311 v=0.4674751807936953d-3
3312 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3313 a=0.6092660230557310d+0
3314 v=0.4676414903932920d-3
3315 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3316 a=0.6374654204984869d+0
3317 v=0.4674086492347870d-3
3318 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3319 a=0.6615136472609892d+0
3320 v=0.4674928539483207d-3
3321 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3322 a=0.6809487285958127d+0
3323 v=0.4680748979686447d-3
3324 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3325 a=0.6952980021665196d+0
3326 v=0.4690449806389040d-3
3327 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3328 a=0.7041245497695400d+0
3329 v=0.4699877075860818d-3
3330 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3331 a=0.6744033088306065d-1
3332 v=0.2099942281069176d-3
3333 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3334 a=0.1678684485334166d+0
3335 v=0.3172269150712804d-3
3336 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3337 a=0.2793559049539613d+0
3338 v=0.3832051358546523d-3
3339 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3340 a=0.3935264218057639d+0
3341 v=0.4252193818146985d-3
3342 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3343 a=0.5052629268232558d+0
3344 v=0.4513807963755000d-3
3345 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3346 a=0.6107905315437531d+0
3347 v=0.4657797469114178d-3
3348 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3349 a=0.1135081039843524d+0
3350 b=0.3331954884662588d-1
3351 v=0.2733362800522836d-3
3352 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3353 a=0.1612866626099378d+0
3354 b=0.7247167465436538d-1
3355 v=0.3235485368463559d-3
3356 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3357 a=0.2100786550168205d+0
3358 b=0.1151539110849745d+0
3359 v=0.3624908726013453d-3
3360 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3361 a=0.2592282009459942d+0
3362 b=0.1599491097143677d+0
3363 v=0.3925540070712828d-3
3364 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3365 a=0.3081740561320203d+0
3366 b=0.2058699956028027d+0
3367 v=0.4156129781116235d-3
3368 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3369 a=0.3564289781578164d+0
3370 b=0.2521624953502911d+0
3371 v=0.4330644984623263d-3
3372 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3373 a=0.4035587288240703d+0
3374 b=0.2982090785797674d+0
3375 v=0.4459677725921312d-3
3376 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3377 a=0.4491671196373903d+0
3378 b=0.3434762087235733d+0
3379 v=0.4551593004456795d-3
3380 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3381 a=0.4928854782917489d+0
3382 b=0.3874831357203437d+0
3383 v=0.4613341462749918d-3
3384 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3385 a=0.5343646791958988d+0
3386 b=0.4297814821746926d+0
3387 v=0.4651019618269806d-3
3388 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3389 a=0.5732683216530990d+0
3390 b=0.4699402260943537d+0
3391 v=0.4670249536100625d-3
3392 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3393 a=0.2214131583218986d+0
3394 b=0.3873602040643895d-1
3395 v=0.3549555576441708d-3
3396 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3397 a=0.2741796504750071d+0
3398 b=0.8089496256902013d-1
3399 v=0.3856108245249010d-3
3400 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3401 a=0.3259797439149485d+0
3402 b=0.1251732177620872d+0
3403 v=0.4098622845756882d-3
3404 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3405 a=0.3765441148826891d+0
3406 b=0.1706260286403185d+0
3407 v=0.4286328604268950d-3
3408 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3409 a=0.4255773574530558d+0
3410 b=0.2165115147300408d+0
3411 v=0.4427802198993945d-3
3412 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3413 a=0.4727795117058430d+0
3414 b=0.2622089812225259d+0
3415 v=0.4530473511488561d-3
3416 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3417 a=0.5178546895819012d+0
3418 b=0.3071721431296201d+0
3419 v=0.4600805475703138d-3
3420 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3421 a=0.5605141192097460d+0
3422 b=0.3508998998801138d+0
3423 v=0.4644599059958017d-3
3424 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3425 a=0.6004763319352512d+0
3426 b=0.3929160876166931d+0
3427 v=0.4667274455712508d-3
3428 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3429 a=0.3352842634946949d+0
3430 b=0.4202563457288019d-1
3431 v=0.4069360518020356d-3
3432 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3433 a=0.3891971629814670d+0
3434 b=0.8614309758870850d-1
3435 v=0.4260442819919195d-3
3436 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3437 a=0.4409875565542281d+0
3438 b=0.1314500879380001d+0
3439 v=0.4408678508029063d-3
3440 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3441 a=0.4904893058592484d+0
3442 b=0.1772189657383859d+0
3443 v=0.4518748115548597d-3
3444 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3445 a=0.5375056138769549d+0
3446 b=0.2228277110050294d+0
3447 v=0.4595564875375116d-3
3448 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3449 a=0.5818255708669969d+0
3450 b=0.2677179935014386d+0
3451 v=0.4643988774315846d-3
3452 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3453 a=0.6232334858144959d+0
3454 b=0.3113675035544165d+0
3455 v=0.4668827491646946d-3
3456 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3457 a=0.4489485354492058d+0
3458 b=0.4409162378368174d-1
3459 v=0.4400541823741973d-3
3460 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3461 a=0.5015136875933150d+0
3462 b=0.8939009917748489d-1
3463 v=0.4514512890193797d-3
3464 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3465 a=0.5511300550512623d+0
3466 b=0.1351806029383365d+0
3467 v=0.4596198627347549d-3
3468 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3469 a=0.5976720409858000d+0
3470 b=0.1808370355053196d+0
3471 v=0.4648659016801781d-3
3472 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3473 a=0.6409956378989354d+0
3474 b=0.2257852192301602d+0
3475 v=0.4675502017157673d-3
3476 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3477 a=0.5581222330827514d+0
3478 b=0.4532173421637160d-1
3479 v=0.4598494476455523d-3
3480 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3481 a=0.6074705984161695d+0
3482 b=0.9117488031840314d-1
3483 v=0.4654916955152048d-3
3484 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3485 a=0.6532272537379033d+0
3486 b=0.1369294213140155d+0
3487 v=0.4684709779505137d-3
3488 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3489 a=0.6594761494500487d+0
3490 b=0.4589901487275583d-1
3491 v=0.4691445539106986d-3
3492 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3493 n=n-1
3494 RETURN
3495 END
3496 SUBROUTINE ld2702(X,Y,Z,W,N)
3497 real*8 x(2702)
3498 real*8 y(2702)
3499 real*8 z(2702)
3500 real*8 w(2702)
3501 INTEGER N
3502 DOUBLE PRECISION A,B,V
3503CVW
3504CVW LEBEDEV 2702-POINT ANGULAR GRID
3505CVW
3506chvd
3507chvd This subroutine is part of a set of subroutines that generate
3508chvd Lebedev grids [1-6] for integration on a sphere. The original
3509chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
3510chvd translated into fortran by Dr. Christoph van Wuellen.
3511chvd This subroutine was translated using a C to fortran77 conversion
3512chvd tool written by Dr. Christoph van Wuellen.
3513chvd
3514chvd Users of this code are asked to include reference [1] in their
3515chvd publications, and in the user- and programmers-manuals
3516chvd describing their codes.
3517chvd
3518chvd This code was distributed through CCL (http://wtempwtempwtemp.ccl.net/).
3519chvd
3520chvd [1] V.I. Lebedev, and D.N. Laikov
3521chvd "A quadrature formula for the sphere of the 131st
3522chvd algebraic order of accuracy"
3523chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
3524chvd
3525chvd [2] V.I. Lebedev
3526chvd "A quadrature formula for the sphere of 59th algebraic
3527chvd order of accuracy"
3528chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
3529chvd
3530chvd [3] V.I. Lebedev, and A.L. Skorokhodov
3531chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
3532chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
3533chvd
3534chvd [4] V.I. Lebedev
3535chvd "Spherical quadrature formulas exact to orders 25-29"
3536chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
3537chvd
3538chvd [5] V.I. Lebedev
3539chvd "Quadratures on a sphere"
3540chvd Computational Mathematics and Mathematical Physics, Vol. 16,
3541chvd 1976, pp. 10-24.
3542chvd
3543chvd [6] V.I. Lebedev
3544chvd "Values of the nodes and weights of ninth to seventeenth
3545chvd order Gauss-Markov quadrature formulae invariant under the
3546chvd octahedron group with inversion"
3547chvd Computational Mathematics and Mathematical Physics, Vol. 15,
3548chvd 1975, pp. 44-51.
3549chvd
3550 n=1
3551 v=0.2998675149888161d-4
3552 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
3553 v=0.4077860529495355d-3
3554 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
3555 a=0.2065562538818703d-1
3556 v=0.1185349192520667d-3
3557 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3558 a=0.5250918173022379d-1
3559 v=0.1913408643425751d-3
3560 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3561 a=0.8993480082038376d-1
3562 v=0.2452886577209897d-3
3563 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3564 a=0.1306023924436019d+0
3565 v=0.2862408183288702d-3
3566 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3567 a=0.1732060388531418d+0
3568 v=0.3178032258257357d-3
3569 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3570 a=0.2168727084820249d+0
3571 v=0.3422945667633690d-3
3572 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3573 a=0.2609528309173586d+0
3574 v=0.3612790520235922d-3
3575 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3576 a=0.3049252927938952d+0
3577 v=0.3758638229818521d-3
3578 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3579 a=0.3483484138084404d+0
3580 v=0.3868711798859953d-3
3581 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3582 a=0.3908321549106406d+0
3583 v=0.3949429933189938d-3
3584 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3585 a=0.4320210071894814d+0
3586 v=0.4006068107541156d-3
3587 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3588 a=0.4715824795890053d+0
3589 v=0.4043192149672723d-3
3590 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3591 a=0.5091984794078453d+0
3592 v=0.4064947495808078d-3
3593 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3594 a=0.5445580145650803d+0
3595 v=0.4075245619813152d-3
3596 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3597 a=0.6072575796841768d+0
3598 v=0.4076423540893566d-3
3599 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3600 a=0.6339484505755803d+0
3601 v=0.4074280862251555d-3
3602 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3603 a=0.6570718257486958d+0
3604 v=0.4074163756012244d-3
3605 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3606 a=0.6762557330090709d+0
3607 v=0.4077647795071246d-3
3608 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3609 a=0.6911161696923790d+0
3610 v=0.4084517552782530d-3
3611 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3612 a=0.7012841911659961d+0
3613 v=0.4092468459224052d-3
3614 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3615 a=0.7064559272410020d+0
3616 v=0.4097872687240906d-3
3617 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3618 a=0.6123554989894765d-1
3619 v=0.1738986811745028d-3
3620 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3621 a=0.1533070348312393d+0
3622 v=0.2659616045280191d-3
3623 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3624 a=0.2563902605244206d+0
3625 v=0.3240596008171533d-3
3626 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3627 a=0.3629346991663361d+0
3628 v=0.3621195964432943d-3
3629 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3630 a=0.4683949968987538d+0
3631 v=0.3868838330760539d-3
3632 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3633 a=0.5694479240657952d+0
3634 v=0.4018911532693111d-3
3635 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3636 a=0.6634465430993955d+0
3637 v=0.4089929432983252d-3
3638 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3639 a=0.1033958573552305d+0
3640 b=0.3034544009063584d-1
3641 v=0.2279907527706409d-3
3642 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3643 a=0.1473521412414395d+0
3644 b=0.6618803044247135d-1
3645 v=0.2715205490578897d-3
3646 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3647 a=0.1924552158705967d+0
3648 b=0.1054431128987715d+0
3649 v=0.3057917896703976d-3
3650 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3651 a=0.2381094362890328d+0
3652 b=0.1468263551238858d+0
3653 v=0.3326913052452555d-3
3654 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3655 a=0.2838121707936760d+0
3656 b=0.1894486108187886d+0
3657 v=0.3537334711890037d-3
3658 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3659 a=0.3291323133373415d+0
3660 b=0.2326374238761579d+0
3661 v=0.3700567500783129d-3
3662 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3663 a=0.3736896978741460d+0
3664 b=0.2758485808485768d+0
3665 v=0.3825245372589122d-3
3666 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3667 a=0.4171406040760013d+0
3668 b=0.3186179331996921d+0
3669 v=0.3918125171518296d-3
3670 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3671 a=0.4591677985256915d+0
3672 b=0.3605329796303794d+0
3673 v=0.3984720419937579d-3
3674 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3675 a=0.4994733831718418d+0
3676 b=0.4012147253586509d+0
3677 v=0.4029746003338211d-3
3678 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3679 a=0.5377731830445096d+0
3680 b=0.4403050025570692d+0
3681 v=0.4057428632156627d-3
3682 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3683 a=0.5737917830001331d+0
3684 b=0.4774565904277483d+0
3685 v=0.4071719274114857d-3
3686 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3687 a=0.2027323586271389d+0
3688 b=0.3544122504976147d-1
3689 v=0.2990236950664119d-3
3690 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3691 a=0.2516942375187273d+0
3692 b=0.7418304388646328d-1
3693 v=0.3262951734212878d-3
3694 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3695 a=0.3000227995257181d+0
3696 b=0.1150502745727186d+0
3697 v=0.3482634608242413d-3
3698 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3699 a=0.3474806691046342d+0
3700 b=0.1571963371209364d+0
3701 v=0.3656596681700892d-3
3702 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3703 a=0.3938103180359209d+0
3704 b=0.1999631877247100d+0
3705 v=0.3791740467794218d-3
3706 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3707 a=0.4387519590455703d+0
3708 b=0.2428073457846535d+0
3709 v=0.3894034450156905d-3
3710 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3711 a=0.4820503960077787d+0
3712 b=0.2852575132906155d+0
3713 v=0.3968600245508371d-3
3714 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3715 a=0.5234573778475101d+0
3716 b=0.3268884208674639d+0
3717 v=0.4019931351420050d-3
3718 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3719 a=0.5627318647235282d+0
3720 b=0.3673033321675939d+0
3721 v=0.4052108801278599d-3
3722 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3723 a=0.5996390607156954d+0
3724 b=0.4061211551830290d+0
3725 v=0.4068978613940934d-3
3726 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3727 a=0.3084780753791947d+0
3728 b=0.3860125523100059d-1
3729 v=0.3454275351319704d-3
3730 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3731 a=0.3589988275920223d+0
3732 b=0.7928938987104867d-1
3733 v=0.3629963537007920d-3
3734 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3735 a=0.4078628415881973d+0
3736 b=0.1212614643030087d+0
3737 v=0.3770187233889873d-3
3738 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3739 a=0.4549287258889735d+0
3740 b=0.1638770827382693d+0
3741 v=0.3878608613694378d-3
3742 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3743 a=0.5000278512957279d+0
3744 b=0.2065965798260176d+0
3745 v=0.3959065270221274d-3
3746 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3747 a=0.5429785044928199d+0
3748 b=0.2489436378852235d+0
3749 v=0.4015286975463570d-3
3750 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3751 a=0.5835939850491711d+0
3752 b=0.2904811368946891d+0
3753 v=0.4050866785614717d-3
3754 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3755 a=0.6216870353444856d+0
3756 b=0.3307941957666609d+0
3757 v=0.4069320185051913d-3
3758 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3759 a=0.4151104662709091d+0
3760 b=0.4064829146052554d-1
3761 v=0.3760120964062763d-3
3762 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3763 a=0.4649804275009218d+0
3764 b=0.8258424547294755d-1
3765 v=0.3870969564418064d-3
3766 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3767 a=0.5124695757009662d+0
3768 b=0.1251841962027289d+0
3769 v=0.3955287790534055d-3
3770 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3771 a=0.5574711100606224d+0
3772 b=0.1679107505976331d+0
3773 v=0.4015361911302668d-3
3774 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3775 a=0.5998597333287227d+0
3776 b=0.2102805057358715d+0
3777 v=0.4053836986719548d-3
3778 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3779 a=0.6395007148516600d+0
3780 b=0.2518418087774107d+0
3781 v=0.4073578673299117d-3
3782 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3783 a=0.5188456224746252d+0
3784 b=0.4194321676077518d-1
3785 v=0.3954628379231406d-3
3786 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3787 a=0.5664190707942778d+0
3788 b=0.8457661551921499d-1
3789 v=0.4017645508847530d-3
3790 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3791 a=0.6110464353283153d+0
3792 b=0.1273652932519396d+0
3793 v=0.4059030348651293d-3
3794 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3795 a=0.6526430302051563d+0
3796 b=0.1698173239076354d+0
3797 v=0.4080565809484880d-3
3798 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3799 a=0.6167551880377548d+0
3800 b=0.4266398851548864d-1
3801 v=0.4063018753664651d-3
3802 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3803 a=0.6607195418355383d+0
3804 b=0.8551925814238349d-1
3805 v=0.4087191292799671d-3
3806 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3807 n=n-1
3808 RETURN
3809 END
3810 SUBROUTINE ld3074(X,Y,Z,W,N)
3811 real*8 x(3074)
3812 real*8 y(3074)
3813 real*8 z(3074)
3814 real*8 w(3074)
3815 INTEGER N
3816 DOUBLE PRECISION A,B,V
3817CVW
3818CVW LEBEDEV 3074-POINT ANGULAR GRID
3819CVW
3820chvd
3821chvd This subroutine is part of a set of subroutines that generate
3822chvd Lebedev grids [1-6] for integration on a sphere. The original
3823chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
3824chvd translated into fortran by Dr. Christoph van Wuellen.
3825chvd This subroutine was translated using a C to fortran77 conversion
3826chvd tool written by Dr. Christoph van Wuellen.
3827chvd
3828chvd Users of this code are asked to include reference [1] in their
3829chvd publications, and in the user- and programmers-manuals
3830chvd describing their codes.
3831chvd
3832chvd This code was distributed through CCL (http://wtempwtempwtemp.ccl.net/).
3833chvd
3834chvd [1] V.I. Lebedev, and D.N. Laikov
3835chvd "A quadrature formula for the sphere of the 131st
3836chvd algebraic order of accuracy"
3837chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
3838chvd
3839chvd [2] V.I. Lebedev
3840chvd "A quadrature formula for the sphere of 59th algebraic
3841chvd order of accuracy"
3842chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
3843chvd
3844chvd [3] V.I. Lebedev, and A.L. Skorokhodov
3845chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
3846chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
3847chvd
3848chvd [4] V.I. Lebedev
3849chvd "Spherical quadrature formulas exact to orders 25-29"
3850chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
3851chvd
3852chvd [5] V.I. Lebedev
3853chvd "Quadratures on a sphere"
3854chvd Computational Mathematics and Mathematical Physics, Vol. 16,
3855chvd 1976, pp. 10-24.
3856chvd
3857chvd [6] V.I. Lebedev
3858chvd "Values of the nodes and weights of ninth to seventeenth
3859chvd order Gauss-Markov quadrature formulae invariant under the
3860chvd octahedron group with inversion"
3861chvd Computational Mathematics and Mathematical Physics, Vol. 15,
3862chvd 1975, pp. 44-51.
3863chvd
3864 n=1
3865 v=0.2599095953754734d-4
3866 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
3867 v=0.3603134089687541d-3
3868 Call gen_oh( 2, n, x(n), y(n), z(n), w(n), a, b, v)
3869 v=0.3586067974412447d-3
3870 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
3871 a=0.1886108518723392d-1
3872 v=0.9831528474385880d-4
3873 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3874 a=0.4800217244625303d-1
3875 v=0.1605023107954450d-3
3876 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3877 a=0.8244922058397242d-1
3878 v=0.2072200131464099d-3
3879 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3880 a=0.1200408362484023d+0
3881 v=0.2431297618814187d-3
3882 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3883 a=0.1595773530809965d+0
3884 v=0.2711819064496707d-3
3885 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3886 a=0.2002635973434064d+0
3887 v=0.2932762038321116d-3
3888 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3889 a=0.2415127590139982d+0
3890 v=0.3107032514197368d-3
3891 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3892 a=0.2828584158458477d+0
3893 v=0.3243808058921213d-3
3894 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3895 a=0.3239091015338138d+0
3896 v=0.3349899091374030d-3
3897 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3898 a=0.3643225097962194d+0
3899 v=0.3430580688505218d-3
3900 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3901 a=0.4037897083691802d+0
3902 v=0.3490124109290343d-3
3903 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3904 a=0.4420247515194127d+0
3905 v=0.3532148948561955d-3
3906 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3907 a=0.4787572538464938d+0
3908 v=0.3559862669062833d-3
3909 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3910 a=0.5137265251275234d+0
3911 v=0.3576224317551411d-3
3912 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3913 a=0.5466764056654611d+0
3914 v=0.3584050533086076d-3
3915 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3916 a=0.6054859420813535d+0
3917 v=0.3584903581373224d-3
3918 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3919 a=0.6308106701764562d+0
3920 v=0.3582991879040586d-3
3921 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3922 a=0.6530369230179584d+0
3923 v=0.3582371187963125d-3
3924 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3925 a=0.6718609524611158d+0
3926 v=0.3584353631122350d-3
3927 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3928 a=0.6869676499894013d+0
3929 v=0.3589120166517785d-3
3930 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3931 a=0.6980467077240748d+0
3932 v=0.3595445704531601d-3
3933 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3934 a=0.7048241721250522d+0
3935 v=0.3600943557111074d-3
3936 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
3937 a=0.5591105222058232d-1
3938 v=0.1456447096742039d-3
3939 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3940 a=0.1407384078513916d+0
3941 v=0.2252370188283782d-3
3942 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3943 a=0.2364035438976309d+0
3944 v=0.2766135443474897d-3
3945 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3946 a=0.3360602737818170d+0
3947 v=0.3110729491500851d-3
3948 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3949 a=0.4356292630054665d+0
3950 v=0.3342506712303391d-3
3951 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3952 a=0.5321569415256174d+0
3953 v=0.3491981834026860d-3
3954 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3955 a=0.6232956305040554d+0
3956 v=0.3576003604348932d-3
3957 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
3958 a=0.9469870086838469d-1
3959 b=0.2778748387309470d-1
3960 v=0.1921921305788564d-3
3961 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3962 a=0.1353170300568141d+0
3963 b=0.6076569878628364d-1
3964 v=0.2301458216495632d-3
3965 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3966 a=0.1771679481726077d+0
3967 b=0.9703072762711040d-1
3968 v=0.2604248549522893d-3
3969 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3970 a=0.2197066664231751d+0
3971 b=0.1354112458524762d+0
3972 v=0.2845275425870697d-3
3973 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3974 a=0.2624783557374927d+0
3975 b=0.1750996479744100d+0
3976 v=0.3036870897974840d-3
3977 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3978 a=0.3050969521214442d+0
3979 b=0.2154896907449802d+0
3980 v=0.3188414832298066d-3
3981 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3982 a=0.3472252637196021d+0
3983 b=0.2560954625740152d+0
3984 v=0.3307046414722089d-3
3985 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3986 a=0.3885610219026360d+0
3987 b=0.2965070050624096d+0
3988 v=0.3398330969031360d-3
3989 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3990 a=0.4288273776062765d+0
3991 b=0.3363641488734497d+0
3992 v=0.3466757899705373d-3
3993 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3994 a=0.4677662471302948d+0
3995 b=0.3753400029836788d+0
3996 v=0.3516095923230054d-3
3997 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
3998 a=0.5051333589553359d+0
3999 b=0.4131297522144286d+0
4000 v=0.3549645184048486d-3
4001 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4002 a=0.5406942145810492d+0
4003 b=0.4494423776081795d+0
4004 v=0.3570415969441392d-3
4005 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4006 a=0.5742204122576457d+0
4007 b=0.4839938958841502d+0
4008 v=0.3581251798496118d-3
4009 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4010 a=0.1865407027225188d+0
4011 b=0.3259144851070796d-1
4012 v=0.2543491329913348d-3
4013 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4014 a=0.2321186453689432d+0
4015 b=0.6835679505297343d-1
4016 v=0.2786711051330776d-3
4017 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4018 a=0.2773159142523882d+0
4019 b=0.1062284864451989d+0
4020 v=0.2985552361083679d-3
4021 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4022 a=0.3219200192237254d+0
4023 b=0.1454404409323047d+0
4024 v=0.3145867929154039d-3
4025 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4026 a=0.3657032593944029d+0
4027 b=0.1854018282582510d+0
4028 v=0.3273290662067609d-3
4029 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4030 a=0.4084376778363622d+0
4031 b=0.2256297412014750d+0
4032 v=0.3372705511943501d-3
4033 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4034 a=0.4499004945751427d+0
4035 b=0.2657104425000896d+0
4036 v=0.3448274437851510d-3
4037 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4038 a=0.4898758141326335d+0
4039 b=0.3052755487631557d+0
4040 v=0.3503592783048583d-3
4041 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4042 a=0.5281547442266309d+0
4043 b=0.3439863920645423d+0
4044 v=0.3541854792663162d-3
4045 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4046 a=0.5645346989813992d+0
4047 b=0.3815229456121914d+0
4048 v=0.3565995517909428d-3
4049 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4050 a=0.5988181252159848d+0
4051 b=0.4175752420966734d+0
4052 v=0.3578802078302898d-3
4053 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4054 a=0.2850425424471603d+0
4055 b=0.3562149509862536d-1
4056 v=0.2958644592860982d-3
4057 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4058 a=0.3324619433027876d+0
4059 b=0.7330318886871096d-1
4060 v=0.3119548129116835d-3
4061 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4062 a=0.3785848333076282d+0
4063 b=0.1123226296008472d+0
4064 v=0.3250745225005984d-3
4065 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4066 a=0.4232891028562115d+0
4067 b=0.1521084193337708d+0
4068 v=0.3355153415935208d-3
4069 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4070 a=0.4664287050829722d+0
4071 b=0.1921844459223610d+0
4072 v=0.3435847568549328d-3
4073 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4074 a=0.5078458493735726d+0
4075 b=0.2321360989678303d+0
4076 v=0.3495786831622488d-3
4077 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4078 a=0.5473779816204180d+0
4079 b=0.2715886486360520d+0
4080 v=0.3537767805534621d-3
4081 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4082 a=0.5848617133811376d+0
4083 b=0.3101924707571355d+0
4084 v=0.3564459815421428d-3
4085 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4086 a=0.6201348281584888d+0
4087 b=0.3476121052890973d+0
4088 v=0.3578464061225468d-3
4089 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4090 a=0.3852191185387871d+0
4091 b=0.3763224880035108d-1
4092 v=0.3239748762836212d-3
4093 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4094 a=0.4325025061073423d+0
4095 b=0.7659581935637135d-1
4096 v=0.3345491784174287d-3
4097 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4098 a=0.4778486229734490d+0
4099 b=0.1163381306083900d+0
4100 v=0.3429126177301782d-3
4101 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4102 a=0.5211663693009000d+0
4103 b=0.1563890598752899d+0
4104 v=0.3492420343097421d-3
4105 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4106 a=0.5623469504853703d+0
4107 b=0.1963320810149200d+0
4108 v=0.3537399050235257d-3
4109 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4110 a=0.6012718188659246d+0
4111 b=0.2357847407258738d+0
4112 v=0.3566209152659172d-3
4113 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4114 a=0.6378179206390117d+0
4115 b=0.2743846121244060d+0
4116 v=0.3581084321919782d-3
4117 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4118 a=0.4836936460214534d+0
4119 b=0.3895902610739024d-1
4120 v=0.3426522117591512d-3
4121 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4122 a=0.5293792562683797d+0
4123 b=0.7871246819312640d-1
4124 v=0.3491848770121379d-3
4125 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4126 a=0.5726281253100033d+0
4127 b=0.1187963808202981d+0
4128 v=0.3539318235231476d-3
4129 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4130 a=0.6133658776169068d+0
4131 b=0.1587914708061787d+0
4132 v=0.3570231438458694d-3
4133 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4134 a=0.6515085491865307d+0
4135 b=0.1983058575227646d+0
4136 v=0.3586207335051714d-3
4137 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4138 a=0.5778692716064976d+0
4139 b=0.3977209689791542d-1
4140 v=0.3541196205164025d-3
4141 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4142 a=0.6207904288086192d+0
4143 b=0.7990157592981152d-1
4144 v=0.3574296911573953d-3
4145 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4146 a=0.6608688171046802d+0
4147 b=0.1199671308754309d+0
4148 v=0.3591993279818963d-3
4149 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4150 a=0.6656263089489130d+0
4151 b=0.4015955957805969d-1
4152 v=0.3595855034661997d-3
4153 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4154 n=n-1
4155 RETURN
4156 END
4157 SUBROUTINE ld3470(X,Y,Z,W,N)
4158 real*8 x(3470)
4159 real*8 y(3470)
4160 real*8 z(3470)
4161 real*8 w(3470)
4162 INTEGER N
4163 DOUBLE PRECISION A,B,V
4164CVW
4165CVW LEBEDEV 3470-POINT ANGULAR GRID
4166CVW
4167chvd
4168chvd This subroutine is part of a set of subroutines that generate
4169chvd Lebedev grids [1-6] for integration on a sphere. The original
4170chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
4171chvd translated into fortran by Dr. Christoph van Wuellen.
4172chvd This subroutine was translated using a C to fortran77 conversion
4173chvd tool written by Dr. Christoph van Wuellen.
4174chvd
4175chvd Users of this code are asked to include reference [1] in their
4176chvd publications, and in the user- and programmers-manuals
4177chvd describing their codes.
4178chvd
4179chvd This code was distributed through CCL (http://wtempwtempwtemp.ccl.net/).
4180chvd
4181chvd [1] V.I. Lebedev, and D.N. Laikov
4182chvd "A quadrature formula for the sphere of the 131st
4183chvd algebraic order of accuracy"
4184chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
4185chvd
4186chvd [2] V.I. Lebedev
4187chvd "A quadrature formula for the sphere of 59th algebraic
4188chvd order of accuracy"
4189chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
4190chvd
4191chvd [3] V.I. Lebedev, and A.L. Skorokhodov
4192chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
4193chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
4194chvd
4195chvd [4] V.I. Lebedev
4196chvd "Spherical quadrature formulas exact to orders 25-29"
4197chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
4198chvd
4199chvd [5] V.I. Lebedev
4200chvd "Quadratures on a sphere"
4201chvd Computational Mathematics and Mathematical Physics, Vol. 16,
4202chvd 1976, pp. 10-24.
4203chvd
4204chvd [6] V.I. Lebedev
4205chvd "Values of the nodes and weights of ninth to seventeenth
4206chvd order Gauss-Markov quadrature formulae invariant under the
4207chvd octahedron group with inversion"
4208chvd Computational Mathematics and Mathematical Physics, Vol. 15,
4209chvd 1975, pp. 44-51.
4210chvd
4211 n=1
4212 v=0.2040382730826330d-4
4213 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
4214 v=0.3178149703889544d-3
4215 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
4216 a=0.1721420832906233d-1
4217 v=0.8288115128076110d-4
4218 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4219 a=0.4408875374981770d-1
4220 v=0.1360883192522954d-3
4221 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4222 a=0.7594680813878681d-1
4223 v=0.1766854454542662d-3
4224 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4225 a=0.1108335359204799d+0
4226 v=0.2083153161230153d-3
4227 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4228 a=0.1476517054388567d+0
4229 v=0.2333279544657158d-3
4230 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4231 a=0.1856731870860615d+0
4232 v=0.2532809539930247d-3
4233 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4234 a=0.2243634099428821d+0
4235 v=0.2692472184211158d-3
4236 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4237 a=0.2633006881662727d+0
4238 v=0.2819949946811885d-3
4239 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4240 a=0.3021340904916283d+0
4241 v=0.2920953593973030d-3
4242 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4243 a=0.3405594048030089d+0
4244 v=0.2999889782948352d-3
4245 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4246 a=0.3783044434007372d+0
4247 v=0.3060292120496902d-3
4248 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4249 a=0.4151194767407910d+0
4250 v=0.3105109167522192d-3
4251 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4252 a=0.4507705766443257d+0
4253 v=0.3136902387550312d-3
4254 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4255 a=0.4850346056573187d+0
4256 v=0.3157984652454632d-3
4257 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4258 a=0.5176950817792470d+0
4259 v=0.3170516518425422d-3
4260 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4261 a=0.5485384240820989d+0
4262 v=0.3176568425633755d-3
4263 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4264 a=0.6039117238943308d+0
4265 v=0.3177198411207062d-3
4266 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4267 a=0.6279956655573113d+0
4268 v=0.3175519492394733d-3
4269 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4270 a=0.6493636169568952d+0
4271 v=0.3174654952634756d-3
4272 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4273 a=0.6677644117704504d+0
4274 v=0.3175676415467654d-3
4275 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4276 a=0.6829368572115624d+0
4277 v=0.3178923417835410d-3
4278 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4279 a=0.6946195818184121d+0
4280 v=0.3183788287531909d-3
4281 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4282 a=0.7025711542057026d+0
4283 v=0.3188755151918807d-3
4284 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4285 a=0.7066004767140119d+0
4286 v=0.3191916889313849d-3
4287 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4288 a=0.5132537689946062d-1
4289 v=0.1231779611744508d-3
4290 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
4291 a=0.1297994661331225d+0
4292 v=0.1924661373839880d-3
4293 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
4294 a=0.2188852049401307d+0
4295 v=0.2380881867403424d-3
4296 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
4297 a=0.3123174824903457d+0
4298 v=0.2693100663037885d-3
4299 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
4300 a=0.4064037620738195d+0
4301 v=0.2908673382834366d-3
4302 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
4303 a=0.4984958396944782d+0
4304 v=0.3053914619381535d-3
4305 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
4306 a=0.5864975046021365d+0
4307 v=0.3143916684147777d-3
4308 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
4309 a=0.6686711634580175d+0
4310 v=0.3187042244055363d-3
4311 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
4312 a=0.8715738780835950d-1
4313 b=0.2557175233367578d-1
4314 v=0.1635219535869790d-3
4315 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4316 a=0.1248383123134007d+0
4317 b=0.5604823383376681d-1
4318 v=0.1968109917696070d-3
4319 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4320 a=0.1638062693383378d+0
4321 b=0.8968568601900765d-1
4322 v=0.2236754342249974d-3
4323 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4324 a=0.2035586203373176d+0
4325 b=0.1254086651976279d+0
4326 v=0.2453186687017181d-3
4327 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4328 a=0.2436798975293774d+0
4329 b=0.1624780150162012d+0
4330 v=0.2627551791580541d-3
4331 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4332 a=0.2838207507773806d+0
4333 b=0.2003422342683208d+0
4334 v=0.2767654860152220d-3
4335 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4336 a=0.3236787502217692d+0
4337 b=0.2385628026255263d+0
4338 v=0.2879467027765895d-3
4339 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4340 a=0.3629849554840691d+0
4341 b=0.2767731148783578d+0
4342 v=0.2967639918918702d-3
4343 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4344 a=0.4014948081992087d+0
4345 b=0.3146542308245309d+0
4346 v=0.3035900684660351d-3
4347 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4348 a=0.4389818379260225d+0
4349 b=0.3519196415895088d+0
4350 v=0.3087338237298308d-3
4351 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4352 a=0.4752331143674377d+0
4353 b=0.3883050984023654d+0
4354 v=0.3124608838860167d-3
4355 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4356 a=0.5100457318374018d+0
4357 b=0.4235613423908649d+0
4358 v=0.3150084294226743d-3
4359 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4360 a=0.5432238388954868d+0
4361 b=0.4574484717196220d+0
4362 v=0.3165958398598402d-3
4363 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4364 a=0.5745758685072442d+0
4365 b=0.4897311639255524d+0
4366 v=0.3174320440957372d-3
4367 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4368 a=0.1723981437592809d+0
4369 b=0.3010630597881105d-1
4370 v=0.2182188909812599d-3
4371 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4372 a=0.2149553257844597d+0
4373 b=0.6326031554204694d-1
4374 v=0.2399727933921445d-3
4375 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4376 a=0.2573256081247422d+0
4377 b=0.9848566980258631d-1
4378 v=0.2579796133514652d-3
4379 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4380 a=0.2993163751238106d+0
4381 b=0.1350835952384266d+0
4382 v=0.2727114052623535d-3
4383 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4384 a=0.3407238005148000d+0
4385 b=0.1725184055442181d+0
4386 v=0.2846327656281355d-3
4387 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4388 a=0.3813454978483264d+0
4389 b=0.2103559279730725d+0
4390 v=0.2941491102051334d-3
4391 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4392 a=0.4209848104423343d+0
4393 b=0.2482278774554860d+0
4394 v=0.3016049492136107d-3
4395 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4396 a=0.4594519699996300d+0
4397 b=0.2858099509982883d+0
4398 v=0.3072949726175648d-3
4399 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4400 a=0.4965640166185930d+0
4401 b=0.3228075659915428d+0
4402 v=0.3114768142886460d-3
4403 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4404 a=0.5321441655571562d+0
4405 b=0.3589459907204151d+0
4406 v=0.3143823673666223d-3
4407 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4408 a=0.5660208438582166d+0
4409 b=0.3939630088864310d+0
4410 v=0.3162269764661535d-3
4411 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4412 a=0.5980264315964364d+0
4413 b=0.4276029922949089d+0
4414 v=0.3172164663759821d-3
4415 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4416 a=0.2644215852350733d+0
4417 b=0.3300939429072552d-1
4418 v=0.2554575398967435d-3
4419 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4420 a=0.3090113743443063d+0
4421 b=0.6803887650078501d-1
4422 v=0.2701704069135677d-3
4423 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4424 a=0.3525871079197808d+0
4425 b=0.1044326136206709d+0
4426 v=0.2823693413468940d-3
4427 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4428 a=0.3950418005354029d+0
4429 b=0.1416751597517679d+0
4430 v=0.2922898463214289d-3
4431 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4432 a=0.4362475663430163d+0
4433 b=0.1793408610504821d+0
4434 v=0.3001829062162428d-3
4435 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4436 a=0.4760661812145854d+0
4437 b=0.2170630750175722d+0
4438 v=0.3062890864542953d-3
4439 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4440 a=0.5143551042512103d+0
4441 b=0.2545145157815807d+0
4442 v=0.3108328279264746d-3
4443 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4444 a=0.5509709026935597d+0
4445 b=0.2913940101706601d+0
4446 v=0.3140243146201245d-3
4447 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4448 a=0.5857711030329428d+0
4449 b=0.3274169910910705d+0
4450 v=0.3160638030977130d-3
4451 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4452 a=0.6186149917404392d+0
4453 b=0.3623081329317265d+0
4454 v=0.3171462882206275d-3
4455 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4456 a=0.3586894569557064d+0
4457 b=0.3497354386450040d-1
4458 v=0.2812388416031796d-3
4459 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4460 a=0.4035266610019441d+0
4461 b=0.7129736739757095d-1
4462 v=0.2912137500288045d-3
4463 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4464 a=0.4467775312332510d+0
4465 b=0.1084758620193165d+0
4466 v=0.2993241256502206d-3
4467 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4468 a=0.4883638346608543d+0
4469 b=0.1460915689241772d+0
4470 v=0.3057101738983822d-3
4471 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4472 a=0.5281908348434601d+0
4473 b=0.1837790832369980d+0
4474 v=0.3105319326251432d-3
4475 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4476 a=0.5661542687149311d+0
4477 b=0.2212075390874021d+0
4478 v=0.3139565514428167d-3
4479 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4480 a=0.6021450102031452d+0
4481 b=0.2580682841160985d+0
4482 v=0.3161543006806366d-3
4483 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4484 a=0.6360520783610050d+0
4485 b=0.2940656362094121d+0
4486 v=0.3172985960613294d-3
4487 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4488 a=0.4521611065087196d+0
4489 b=0.3631055365867002d-1
4490 v=0.2989400336901431d-3
4491 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4492 a=0.4959365651560963d+0
4493 b=0.7348318468484350d-1
4494 v=0.3054555883947677d-3
4495 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4496 a=0.5376815804038283d+0
4497 b=0.1111087643812648d+0
4498 v=0.3104764960807702d-3
4499 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4500 a=0.5773314480243768d+0
4501 b=0.1488226085145408d+0
4502 v=0.3141015825977616d-3
4503 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4504 a=0.6148113245575056d+0
4505 b=0.1862892274135151d+0
4506 v=0.3164520621159896d-3
4507 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4508 a=0.6500407462842380d+0
4509 b=0.2231909701714456d+0
4510 v=0.3176652305912204d-3
4511 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4512 a=0.5425151448707213d+0
4513 b=0.3718201306118944d-1
4514 v=0.3105097161023939d-3
4515 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4516 a=0.5841860556907931d+0
4517 b=0.7483616335067346d-1
4518 v=0.3143014117890550d-3
4519 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4520 a=0.6234632186851500d+0
4521 b=0.1125990834266120d+0
4522 v=0.3168172866287200d-3
4523 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4524 a=0.6602934551848843d+0
4525 b=0.1501303813157619d+0
4526 v=0.3181401865570968d-3
4527 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4528 a=0.6278573968375105d+0
4529 b=0.3767559930245720d-1
4530 v=0.3170663659156037d-3
4531 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4532 a=0.6665611711264577d+0
4533 b=0.7548443301360158d-1
4534 v=0.3185447944625510d-3
4535 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4536 n=n-1
4537 RETURN
4538 END
4539 SUBROUTINE ld3890(X,Y,Z,W,N)
4540 real*8 x(3890)
4541 real*8 y(3890)
4542 real*8 z(3890)
4543 real*8 w(3890)
4544 INTEGER N
4545 DOUBLE PRECISION A,B,V
4546CVW
4547CVW LEBEDEV 3890-POINT ANGULAR GRID
4548CVW
4549chvd
4550chvd This subroutine is part of a set of subroutines that generate
4551chvd Lebedev grids [1-6] for integration on a sphere. The original
4552chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
4553chvd translated into fortran by Dr. Christoph van Wuellen.
4554chvd This subroutine was translated using a C to fortran77 conversion
4555chvd tool written by Dr. Christoph van Wuellen.
4556chvd
4557chvd Users of this code are asked to include reference [1] in their
4558chvd publications, and in the user- and programmers-manuals
4559chvd describing their codes.
4560chvd
4561chvd This code was distributed through CCL (http://wtempwtempwtemp.ccl.net/).
4562chvd
4563chvd [1] V.I. Lebedev, and D.N. Laikov
4564chvd "A quadrature formula for the sphere of the 131st
4565chvd algebraic order of accuracy"
4566chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
4567chvd
4568chvd [2] V.I. Lebedev
4569chvd "A quadrature formula for the sphere of 59th algebraic
4570chvd order of accuracy"
4571chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
4572chvd
4573chvd [3] V.I. Lebedev, and A.L. Skorokhodov
4574chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
4575chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
4576chvd
4577chvd [4] V.I. Lebedev
4578chvd "Spherical quadrature formulas exact to orders 25-29"
4579chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
4580chvd
4581chvd [5] V.I. Lebedev
4582chvd "Quadratures on a sphere"
4583chvd Computational Mathematics and Mathematical Physics, Vol. 16,
4584chvd 1976, pp. 10-24.
4585chvd
4586chvd [6] V.I. Lebedev
4587chvd "Values of the nodes and weights of ninth to seventeenth
4588chvd order Gauss-Markov quadrature formulae invariant under the
4589chvd octahedron group with inversion"
4590chvd Computational Mathematics and Mathematical Physics, Vol. 15,
4591chvd 1975, pp. 44-51.
4592chvd
4593 n=1
4594 v=0.1807395252196920d-4
4595 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
4596 v=0.2848008782238827d-3
4597 Call gen_oh( 2, n, x(n), y(n), z(n), w(n), a, b, v)
4598 v=0.2836065837530581d-3
4599 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
4600 a=0.1587876419858352d-1
4601 v=0.7013149266673816d-4
4602 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4603 a=0.4069193593751206d-1
4604 v=0.1162798021956766d-3
4605 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4606 a=0.7025888115257997d-1
4607 v=0.1518728583972105d-3
4608 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4609 a=0.1027495450028704d+0
4610 v=0.1798796108216934d-3
4611 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4612 a=0.1371457730893426d+0
4613 v=0.2022593385972785d-3
4614 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4615 a=0.1727758532671953d+0
4616 v=0.2203093105575464d-3
4617 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4618 a=0.2091492038929037d+0
4619 v=0.2349294234299855d-3
4620 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4621 a=0.2458813281751915d+0
4622 v=0.2467682058747003d-3
4623 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4624 a=0.2826545859450066d+0
4625 v=0.2563092683572224d-3
4626 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4627 a=0.3191957291799622d+0
4628 v=0.2639253896763318d-3
4629 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4630 a=0.3552621469299578d+0
4631 v=0.2699137479265108d-3
4632 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4633 a=0.3906329503406230d+0
4634 v=0.2745196420166739d-3
4635 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4636 a=0.4251028614093031d+0
4637 v=0.2779529197397593d-3
4638 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4639 a=0.4584777520111870d+0
4640 v=0.2803996086684265d-3
4641 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4642 a=0.4905711358710193d+0
4643 v=0.2820302356715842d-3
4644 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4645 a=0.5212011669847385d+0
4646 v=0.2830056747491068d-3
4647 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4648 a=0.5501878488737995d+0
4649 v=0.2834808950776839d-3
4650 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4651 a=0.6025037877479342d+0
4652 v=0.2835282339078929d-3
4653 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4654 a=0.6254572689549016d+0
4655 v=0.2833819267065800d-3
4656 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4657 a=0.6460107179528248d+0
4658 v=0.2832858336906784d-3
4659 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4660 a=0.6639541138154251d+0
4661 v=0.2833268235451244d-3
4662 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4663 a=0.6790688515667495d+0
4664 v=0.2835432677029253d-3
4665 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4666 a=0.6911338580371512d+0
4667 v=0.2839091722743049d-3
4668 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4669 a=0.6999385956126490d+0
4670 v=0.2843308178875841d-3
4671 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4672 a=0.7053037748656896d+0
4673 v=0.2846703550533846d-3
4674 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
4675 a=0.4732224387180115d-1
4676 v=0.1051193406971900d-3
4677 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
4678 a=0.1202100529326803d+0
4679 v=0.1657871838796974d-3
4680 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
4681 a=0.2034304820664855d+0
4682 v=0.2064648113714232d-3
4683 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
4684 a=0.2912285643573002d+0
4685 v=0.2347942745819741d-3
4686 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
4687 a=0.3802361792726768d+0
4688 v=0.2547775326597726d-3
4689 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
4690 a=0.4680598511056146d+0
4691 v=0.2686876684847025d-3
4692 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
4693 a=0.5528151052155599d+0
4694 v=0.2778665755515867d-3
4695 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
4696 a=0.6329386307803041d+0
4697 v=0.2830996616782929d-3
4698 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
4699 a=0.8056516651369069d-1
4700 b=0.2363454684003124d-1
4701 v=0.1403063340168372d-3
4702 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4703 a=0.1156476077139389d+0
4704 b=0.5191291632545936d-1
4705 v=0.1696504125939477d-3
4706 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4707 a=0.1520473382760421d+0
4708 b=0.8322715736994519d-1
4709 v=0.1935787242745390d-3
4710 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4711 a=0.1892986699745931d+0
4712 b=0.1165855667993712d+0
4713 v=0.2130614510521968d-3
4714 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4715 a=0.2270194446777792d+0
4716 b=0.1513077167409504d+0
4717 v=0.2289381265931048d-3
4718 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4719 a=0.2648908185093273d+0
4720 b=0.1868882025807859d+0
4721 v=0.2418630292816186d-3
4722 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4723 a=0.3026389259574136d+0
4724 b=0.2229277629776224d+0
4725 v=0.2523400495631193d-3
4726 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4727 a=0.3400220296151384d+0
4728 b=0.2590951840746235d+0
4729 v=0.2607623973449605d-3
4730 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4731 a=0.3768217953335510d+0
4732 b=0.2951047291750847d+0
4733 v=0.2674441032689209d-3
4734 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4735 a=0.4128372900921884d+0
4736 b=0.3307019714169930d+0
4737 v=0.2726432360343356d-3
4738 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4739 a=0.4478807131815630d+0
4740 b=0.3656544101087634d+0
4741 v=0.2765787685924545d-3
4742 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4743 a=0.4817742034089257d+0
4744 b=0.3997448951939695d+0
4745 v=0.2794428690642224d-3
4746 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4747 a=0.5143472814653344d+0
4748 b=0.4327667110812024d+0
4749 v=0.2814099002062895d-3
4750 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4751 a=0.5454346213905650d+0
4752 b=0.4645196123532293d+0
4753 v=0.2826429531578994d-3
4754 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4755 a=0.5748739313170252d+0
4756 b=0.4948063555703345d+0
4757 v=0.2832983542550884d-3
4758 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4759 a=0.1599598738286342d+0
4760 b=0.2792357590048985d-1
4761 v=0.1886695565284976d-3
4762 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4763 a=0.1998097412500951d+0
4764 b=0.5877141038139065d-1
4765 v=0.2081867882748234d-3
4766 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4767 a=0.2396228952566202d+0
4768 b=0.9164573914691377d-1
4769 v=0.2245148680600796d-3
4770 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4771 a=0.2792228341097746d+0
4772 b=0.1259049641962687d+0
4773 v=0.2380370491511872d-3
4774 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4775 a=0.3184251107546741d+0
4776 b=0.1610594823400863d+0
4777 v=0.2491398041852455d-3
4778 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4779 a=0.3570481164426244d+0
4780 b=0.1967151653460898d+0
4781 v=0.2581632405881230d-3
4782 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4783 a=0.3949164710492144d+0
4784 b=0.2325404606175168d+0
4785 v=0.2653965506227417d-3
4786 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4787 a=0.4318617293970503d+0
4788 b=0.2682461141151439d+0
4789 v=0.2710857216747087d-3
4790 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4791 a=0.4677221009931678d+0
4792 b=0.3035720116011973d+0
4793 v=0.2754434093903659d-3
4794 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4795 a=0.5023417939270955d+0
4796 b=0.3382781859197439d+0
4797 v=0.2786579932519380d-3
4798 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4799 a=0.5355701836636128d+0
4800 b=0.3721383065625942d+0
4801 v=0.2809011080679474d-3
4802 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4803 a=0.5672608451328771d+0
4804 b=0.4049346360466055d+0
4805 v=0.2823336184560987d-3
4806 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4807 a=0.5972704202540162d+0
4808 b=0.4364538098633802d+0
4809 v=0.2831101175806309d-3
4810 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4811 a=0.2461687022333596d+0
4812 b=0.3070423166833368d-1
4813 v=0.2221679970354546d-3
4814 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4815 a=0.2881774566286831d+0
4816 b=0.6338034669281885d-1
4817 v=0.2356185734270703d-3
4818 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4819 a=0.3293963604116978d+0
4820 b=0.9742862487067941d-1
4821 v=0.2469228344805590d-3
4822 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4823 a=0.3697303822241377d+0
4824 b=0.1323799532282290d+0
4825 v=0.2562726348642046d-3
4826 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4827 a=0.4090663023135127d+0
4828 b=0.1678497018129336d+0
4829 v=0.2638756726753028d-3
4830 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4831 a=0.4472819355411712d+0
4832 b=0.2035095105326114d+0
4833 v=0.2699311157390862d-3
4834 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4835 a=0.4842513377231437d+0
4836 b=0.2390692566672091d+0
4837 v=0.2746233268403837d-3
4838 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4839 a=0.5198477629962928d+0
4840 b=0.2742649818076149d+0
4841 v=0.2781225674454771d-3
4842 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4843 a=0.5539453011883145d+0
4844 b=0.3088503806580094d+0
4845 v=0.2805881254045684d-3
4846 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4847 a=0.5864196762401251d+0
4848 b=0.3425904245906614d+0
4849 v=0.2821719877004913d-3
4850 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4851 a=0.6171484466668390d+0
4852 b=0.3752562294789468d+0
4853 v=0.2830222502333124d-3
4854 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4855 a=0.3350337830565727d+0
4856 b=0.3261589934634747d-1
4857 v=0.2457995956744870d-3
4858 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4859 a=0.3775773224758284d+0
4860 b=0.6658438928081572d-1
4861 v=0.2551474407503706d-3
4862 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4863 a=0.4188155229848973d+0
4864 b=0.1014565797157954d+0
4865 v=0.2629065335195311d-3
4866 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4867 a=0.4586805892009344d+0
4868 b=0.1368573320843822d+0
4869 v=0.2691900449925075d-3
4870 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4871 a=0.4970895714224235d+0
4872 b=0.1724614851951608d+0
4873 v=0.2741275485754276d-3
4874 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4875 a=0.5339505133960747d+0
4876 b=0.2079779381416412d+0
4877 v=0.2778530970122595d-3
4878 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4879 a=0.5691665792531440d+0
4880 b=0.2431385788322288d+0
4881 v=0.2805010567646741d-3
4882 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4883 a=0.6026387682680377d+0
4884 b=0.2776901883049853d+0
4885 v=0.2822055834031040d-3
4886 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4887 a=0.6342676150163307d+0
4888 b=0.3113881356386632d+0
4889 v=0.2831016901243473d-3
4890 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4891 a=0.4237951119537067d+0
4892 b=0.3394877848664351d-1
4893 v=0.2624474901131803d-3
4894 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4895 a=0.4656918683234929d+0
4896 b=0.6880219556291447d-1
4897 v=0.2688034163039377d-3
4898 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4899 a=0.5058857069185980d+0
4900 b=0.1041946859721635d+0
4901 v=0.2738932751287636d-3
4902 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4903 a=0.5443204666713996d+0
4904 b=0.1398039738736393d+0
4905 v=0.2777944791242523d-3
4906 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4907 a=0.5809298813759742d+0
4908 b=0.1753373381196155d+0
4909 v=0.2806011661660987d-3
4910 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4911 a=0.6156416039447128d+0
4912 b=0.2105215793514010d+0
4913 v=0.2824181456597460d-3
4914 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4915 a=0.6483801351066604d+0
4916 b=0.2450953312157051d+0
4917 v=0.2833585216577828d-3
4918 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4919 a=0.5103616577251688d+0
4920 b=0.3485560643800719d-1
4921 v=0.2738165236962878d-3
4922 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4923 a=0.5506738792580681d+0
4924 b=0.7026308631512033d-1
4925 v=0.2778365208203180d-3
4926 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4927 a=0.5889573040995292d+0
4928 b=0.1059035061296403d+0
4929 v=0.2807852940418966d-3
4930 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4931 a=0.6251641589516930d+0
4932 b=0.1414823925236026d+0
4933 v=0.2827245949674705d-3
4934 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4935 a=0.6592414921570178d+0
4936 b=0.1767207908214530d+0
4937 v=0.2837342344829828d-3
4938 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4939 a=0.5930314017533384d+0
4940 b=0.3542189339561672d-1
4941 v=0.2809233907610981d-3
4942 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4943 a=0.6309812253390175d+0
4944 b=0.7109574040369549d-1
4945 v=0.2829930809742694d-3
4946 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4947 a=0.6666296011353230d+0
4948 b=0.1067259792282730d+0
4949 v=0.2841097874111479d-3
4950 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4951 a=0.6703715271049922d+0
4952 b=0.3569455268820809d-1
4953 v=0.2843455206008783d-3
4954 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
4955 n=n-1
4956 RETURN
4957 END
4958 SUBROUTINE ld4334(X,Y,Z,W,N)
4959 real*8 x(4334)
4960 real*8 y(4334)
4961 real*8 z(4334)
4962 real*8 w(4334)
4963 INTEGER N
4964 DOUBLE PRECISION A,B,V
4965CVW
4966CVW LEBEDEV 4334-POINT ANGULAR GRID
4967CVW
4968chvd
4969chvd This subroutine is part of a set of subroutines that generate
4970chvd Lebedev grids [1-6] for integration on a sphere. The original
4971chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
4972chvd translated into fortran by Dr. Christoph van Wuellen.
4973chvd This subroutine was translated using a C to fortran77 conversion
4974chvd tool written by Dr. Christoph van Wuellen.
4975chvd
4976chvd Users of this code are asked to include reference [1] in their
4977chvd publications, and in the user- and programmers-manuals
4978chvd describing their codes.
4979chvd
4980chvd This code was distributed through CCL (http://wtempwtempwtemp.ccl.net/).
4981chvd
4982chvd [1] V.I. Lebedev, and D.N. Laikov
4983chvd "A quadrature formula for the sphere of the 131st
4984chvd algebraic order of accuracy"
4985chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
4986chvd
4987chvd [2] V.I. Lebedev
4988chvd "A quadrature formula for the sphere of 59th algebraic
4989chvd order of accuracy"
4990chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
4991chvd
4992chvd [3] V.I. Lebedev, and A.L. Skorokhodov
4993chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
4994chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
4995chvd
4996chvd [4] V.I. Lebedev
4997chvd "Spherical quadrature formulas exact to orders 25-29"
4998chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
4999chvd
5000chvd [5] V.I. Lebedev
5001chvd "Quadratures on a sphere"
5002chvd Computational Mathematics and Mathematical Physics, Vol. 16,
5003chvd 1976, pp. 10-24.
5004chvd
5005chvd [6] V.I. Lebedev
5006chvd "Values of the nodes and weights of ninth to seventeenth
5007chvd order Gauss-Markov quadrature formulae invariant under the
5008chvd octahedron group with inversion"
5009chvd Computational Mathematics and Mathematical Physics, Vol. 15,
5010chvd 1975, pp. 44-51.
5011chvd
5012 n=1
5013 v=0.1449063022537883d-4
5014 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
5015 v=0.2546377329828424d-3
5016 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
5017 a=0.1462896151831013d-1
5018 v=0.6018432961087496d-4
5019 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5020 a=0.3769840812493139d-1
5021 v=0.1002286583263673d-3
5022 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5023 a=0.6524701904096891d-1
5024 v=0.1315222931028093d-3
5025 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5026 a=0.9560543416134648d-1
5027 v=0.1564213746876724d-3
5028 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5029 a=0.1278335898929198d+0
5030 v=0.1765118841507736d-3
5031 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5032 a=0.1613096104466031d+0
5033 v=0.1928737099311080d-3
5034 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5035 a=0.1955806225745371d+0
5036 v=0.2062658534263270d-3
5037 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5038 a=0.2302935218498028d+0
5039 v=0.2172395445953787d-3
5040 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5041 a=0.2651584344113027d+0
5042 v=0.2262076188876047d-3
5043 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5044 a=0.2999276825183209d+0
5045 v=0.2334885699462397d-3
5046 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5047 a=0.3343828669718798d+0
5048 v=0.2393355273179203d-3
5049 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5050 a=0.3683265013750518d+0
5051 v=0.2439559200468863d-3
5052 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5053 a=0.4015763206518108d+0
5054 v=0.2475251866060002d-3
5055 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5056 a=0.4339612026399770d+0
5057 v=0.2501965558158773d-3
5058 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5059 a=0.4653180651114582d+0
5060 v=0.2521081407925925d-3
5061 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5062 a=0.4954893331080803d+0
5063 v=0.2533881002388081d-3
5064 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5065 a=0.5243207068924930d+0
5066 v=0.2541582900848261d-3
5067 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5068 a=0.5516590479041704d+0
5069 v=0.2545365737525860d-3
5070 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5071 a=0.6012371927804176d+0
5072 v=0.2545726993066799d-3
5073 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5074 a=0.6231574466449819d+0
5075 v=0.2544456197465555d-3
5076 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5077 a=0.6429416514181271d+0
5078 v=0.2543481596881064d-3
5079 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5080 a=0.6604124272943595d+0
5081 v=0.2543506451429194d-3
5082 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5083 a=0.6753851470408250d+0
5084 v=0.2544905675493763d-3
5085 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5086 a=0.6876717970626160d+0
5087 v=0.2547611407344429d-3
5088 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5089 a=0.6970895061319234d+0
5090 v=0.2551060375448869d-3
5091 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5092 a=0.7034746912553310d+0
5093 v=0.2554291933816039d-3
5094 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5095 a=0.7067017217542295d+0
5096 v=0.2556255710686343d-3
5097 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5098 a=0.4382223501131123d-1
5099 v=0.9041339695118195d-4
5100 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
5101 a=0.1117474077400006d+0
5102 v=0.1438426330079022d-3
5103 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
5104 a=0.1897153252911440d+0
5105 v=0.1802523089820518d-3
5106 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
5107 a=0.2724023009910331d+0
5108 v=0.2060052290565496d-3
5109 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
5110 a=0.3567163308709902d+0
5111 v=0.2245002248967466d-3
5112 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
5113 a=0.4404784483028087d+0
5114 v=0.2377059847731150d-3
5115 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
5116 a=0.5219833154161411d+0
5117 v=0.2468118955882525d-3
5118 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
5119 a=0.5998179868977553d+0
5120 v=0.2525410872966528d-3
5121 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
5122 a=0.6727803154548222d+0
5123 v=0.2553101409933397d-3
5124 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
5125 a=0.7476563943166086d-1
5126 b=0.2193168509461185d-1
5127 v=0.1212879733668632d-3
5128 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5129 a=0.1075341482001416d+0
5130 b=0.4826419281533887d-1
5131 v=0.1472872881270931d-3
5132 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5133 a=0.1416344885203259d+0
5134 b=0.7751191883575742d-1
5135 v=0.1686846601010828d-3
5136 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5137 a=0.1766325315388586d+0
5138 b=0.1087558139247680d+0
5139 v=0.1862698414660208d-3
5140 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5141 a=0.2121744174481514d+0
5142 b=0.1413661374253096d+0
5143 v=0.2007430956991861d-3
5144 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5145 a=0.2479669443408145d+0
5146 b=0.1748768214258880d+0
5147 v=0.2126568125394796d-3
5148 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5149 a=0.2837600452294113d+0
5150 b=0.2089216406612073d+0
5151 v=0.2224394603372113d-3
5152 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5153 a=0.3193344933193984d+0
5154 b=0.2431987685545972d+0
5155 v=0.2304264522673135d-3
5156 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5157 a=0.3544935442438745d+0
5158 b=0.2774497054377770d+0
5159 v=0.2368854288424087d-3
5160 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5161 a=0.3890571932288154d+0
5162 b=0.3114460356156915d+0
5163 v=0.2420352089461772d-3
5164 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5165 a=0.4228581214259090d+0
5166 b=0.3449806851913012d+0
5167 v=0.2460597113081295d-3
5168 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5169 a=0.4557387211304052d+0
5170 b=0.3778618641248256d+0
5171 v=0.2491181912257687d-3
5172 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5173 a=0.4875487950541643d+0
5174 b=0.4099086391698978d+0
5175 v=0.2513528194205857d-3
5176 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5177 a=0.5181436529962997d+0
5178 b=0.4409474925853973d+0
5179 v=0.2528943096693220d-3
5180 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5181 a=0.5473824095600661d+0
5182 b=0.4708094517711291d+0
5183 v=0.2538660368488136d-3
5184 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5185 a=0.5751263398976174d+0
5186 b=0.4993275140354637d+0
5187 v=0.2543868648299022d-3
5188 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5189 a=0.1489515746840028d+0
5190 b=0.2599381993267017d-1
5191 v=0.1642595537825183d-3
5192 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5193 a=0.1863656444351767d+0
5194 b=0.5479286532462190d-1
5195 v=0.1818246659849308d-3
5196 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5197 a=0.2238602880356348d+0
5198 b=0.8556763251425254d-1
5199 v=0.1966565649492420d-3
5200 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5201 a=0.2612723375728160d+0
5202 b=0.1177257802267011d+0
5203 v=0.2090677905657991d-3
5204 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5205 a=0.2984332990206190d+0
5206 b=0.1508168456192700d+0
5207 v=0.2193820409510504d-3
5208 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5209 a=0.3351786584663333d+0
5210 b=0.1844801892177727d+0
5211 v=0.2278870827661928d-3
5212 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5213 a=0.3713505522209120d+0
5214 b=0.2184145236087598d+0
5215 v=0.2348283192282090d-3
5216 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5217 a=0.4067981098954663d+0
5218 b=0.2523590641486229d+0
5219 v=0.2404139755581477d-3
5220 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5221 a=0.4413769993687534d+0
5222 b=0.2860812976901373d+0
5223 v=0.2448227407760734d-3
5224 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5225 a=0.4749487182516394d+0
5226 b=0.3193686757808996d+0
5227 v=0.2482110455592573d-3
5228 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5229 a=0.5073798105075426d+0
5230 b=0.3520226949547602d+0
5231 v=0.2507192397774103d-3
5232 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5233 a=0.5385410448878654d+0
5234 b=0.3838544395667890d+0
5235 v=0.2524765968534880d-3
5236 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5237 a=0.5683065353670530d+0
5238 b=0.4146810037640963d+0
5239 v=0.2536052388539425d-3
5240 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5241 a=0.5965527620663510d+0
5242 b=0.4443224094681121d+0
5243 v=0.2542230588033068d-3
5244 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5245 a=0.2299227700856157d+0
5246 b=0.2865757664057584d-1
5247 v=0.1944817013047896d-3
5248 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5249 a=0.2695752998553267d+0
5250 b=0.5923421684485993d-1
5251 v=0.2067862362746635d-3
5252 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5253 a=0.3086178716611389d+0
5254 b=0.9117817776057715d-1
5255 v=0.2172440734649114d-3
5256 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5257 a=0.3469649871659077d+0
5258 b=0.1240593814082605d+0
5259 v=0.2260125991723423d-3
5260 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5261 a=0.3845153566319655d+0
5262 b=0.1575272058259175d+0
5263 v=0.2332655008689523d-3
5264 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5265 a=0.4211600033403215d+0
5266 b=0.1912845163525413d+0
5267 v=0.2391699681532458d-3
5268 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5269 a=0.4567867834329882d+0
5270 b=0.2250710177858171d+0
5271 v=0.2438801528273928d-3
5272 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5273 a=0.4912829319232061d+0
5274 b=0.2586521303440910d+0
5275 v=0.2475370504260665d-3
5276 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5277 a=0.5245364793303812d+0
5278 b=0.2918112242865407d+0
5279 v=0.2502707235640574d-3
5280 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5281 a=0.5564369788915756d+0
5282 b=0.3243439239067890d+0
5283 v=0.2522031701054241d-3
5284 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5285 a=0.5868757697775287d+0
5286 b=0.3560536787835351d+0
5287 v=0.2534511269978784d-3
5288 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5289 a=0.6157458853519617d+0
5290 b=0.3867480821242581d+0
5291 v=0.2541284914955151d-3
5292 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5293 a=0.3138461110672113d+0
5294 b=0.3051374637507278d-1
5295 v=0.2161509250688394d-3
5296 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5297 a=0.3542495872050569d+0
5298 b=0.6237111233730755d-1
5299 v=0.2248778513437852d-3
5300 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5301 a=0.3935751553120181d+0
5302 b=0.9516223952401907d-1
5303 v=0.2322388803404617d-3
5304 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5305 a=0.4317634668111147d+0
5306 b=0.1285467341508517d+0
5307 v=0.2383265471001355d-3
5308 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5309 a=0.4687413842250821d+0
5310 b=0.1622318931656033d+0
5311 v=0.2432476675019525d-3
5312 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5313 a=0.5044274237060283d+0
5314 b=0.1959581153836453d+0
5315 v=0.2471122223750674d-3
5316 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5317 a=0.5387354077925727d+0
5318 b=0.2294888081183837d+0
5319 v=0.2500291752486870d-3
5320 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5321 a=0.5715768898356105d+0
5322 b=0.2626031152713945d+0
5323 v=0.2521055942764682d-3
5324 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5325 a=0.6028627200136111d+0
5326 b=0.2950904075286713d+0
5327 v=0.2534472785575503d-3
5328 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5329 a=0.6325039812653463d+0
5330 b=0.3267458451113286d+0
5331 v=0.2541599713080121d-3
5332 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5333 a=0.3981986708423407d+0
5334 b=0.3183291458749821d-1
5335 v=0.2317380975862936d-3
5336 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5337 a=0.4382791182133300d+0
5338 b=0.6459548193880908d-1
5339 v=0.2378550733719775d-3
5340 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5341 a=0.4769233057218166d+0
5342 b=0.9795757037087952d-1
5343 v=0.2428884456739118d-3
5344 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5345 a=0.5140823911194238d+0
5346 b=0.1316307235126655d+0
5347 v=0.2469002655757292d-3
5348 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5349 a=0.5496977833862983d+0
5350 b=0.1653556486358704d+0
5351 v=0.2499657574265851d-3
5352 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5353 a=0.5837047306512727d+0
5354 b=0.1988931724126510d+0
5355 v=0.2521676168486082d-3
5356 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5357 a=0.6160349566926879d+0
5358 b=0.2320174581438950d+0
5359 v=0.2535935662645334d-3
5360 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5361 a=0.6466185353209440d+0
5362 b=0.2645106562168662d+0
5363 v=0.2543356743363214d-3
5364 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5365 a=0.4810835158795404d+0
5366 b=0.3275917807743992d-1
5367 v=0.2427353285201535d-3
5368 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5369 a=0.5199925041324341d+0
5370 b=0.6612546183967181d-1
5371 v=0.2468258039744386d-3
5372 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5373 a=0.5571717692207494d+0
5374 b=0.9981498331474143d-1
5375 v=0.2500060956440310d-3
5376 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5377 a=0.5925789250836378d+0
5378 b=0.1335687001410374d+0
5379 v=0.2523238365420979d-3
5380 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5381 a=0.6261658523859670d+0
5382 b=0.1671444402896463d+0
5383 v=0.2538399260252846d-3
5384 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5385 a=0.6578811126669331d+0
5386 b=0.2003106382156076d+0
5387 v=0.2546255927268069d-3
5388 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5389 a=0.5609624612998100d+0
5390 b=0.3337500940231335d-1
5391 v=0.2500583360048449d-3
5392 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5393 a=0.5979959659984670d+0
5394 b=0.6708750335901803d-1
5395 v=0.2524777638260203d-3
5396 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5397 a=0.6330523711054002d+0
5398 b=0.1008792126424850d+0
5399 v=0.2540951193860656d-3
5400 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5401 a=0.6660960998103972d+0
5402 b=0.1345050343171794d+0
5403 v=0.2549524085027472d-3
5404 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5405 a=0.6365384364585819d+0
5406 b=0.3372799460737052d-1
5407 v=0.2542569507009158d-3
5408 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5409 a=0.6710994302899275d+0
5410 b=0.6755249309678028d-1
5411 v=0.2552114127580376d-3
5412 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5413 n=n-1
5414 RETURN
5415 END
5416 SUBROUTINE ld4802(X,Y,Z,W,N)
5417 real*8 x(4802)
5418 real*8 y(4802)
5419 real*8 z(4802)
5420 real*8 w(4802)
5421 INTEGER N
5422 DOUBLE PRECISION A,B,V
5423CVW
5424CVW LEBEDEV 4802-POINT ANGULAR GRID
5425CVW
5426chvd
5427chvd This subroutine is part of a set of subroutines that generate
5428chvd Lebedev grids [1-6] for integration on a sphere. The original
5429chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
5430chvd translated into fortran by Dr. Christoph van Wuellen.
5431chvd This subroutine was translated using a C to fortran77 conversion
5432chvd tool written by Dr. Christoph van Wuellen.
5433chvd
5434chvd Users of this code are asked to include reference [1] in their
5435chvd publications, and in the user- and programmers-manuals
5436chvd describing their codes.
5437chvd
5438chvd This code was distributed through CCL (http://wtempwtempwtemp.ccl.net/).
5439chvd
5440chvd [1] V.I. Lebedev, and D.N. Laikov
5441chvd "A quadrature formula for the sphere of the 131st
5442chvd algebraic order of accuracy"
5443chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
5444chvd
5445chvd [2] V.I. Lebedev
5446chvd "A quadrature formula for the sphere of 59th algebraic
5447chvd order of accuracy"
5448chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
5449chvd
5450chvd [3] V.I. Lebedev, and A.L. Skorokhodov
5451chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
5452chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
5453chvd
5454chvd [4] V.I. Lebedev
5455chvd "Spherical quadrature formulas exact to orders 25-29"
5456chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
5457chvd
5458chvd [5] V.I. Lebedev
5459chvd "Quadratures on a sphere"
5460chvd Computational Mathematics and Mathematical Physics, Vol. 16,
5461chvd 1976, pp. 10-24.
5462chvd
5463chvd [6] V.I. Lebedev
5464chvd "Values of the nodes and weights of ninth to seventeenth
5465chvd order Gauss-Markov quadrature formulae invariant under the
5466chvd octahedron group with inversion"
5467chvd Computational Mathematics and Mathematical Physics, Vol. 15,
5468chvd 1975, pp. 44-51.
5469chvd
5470 n=1
5471 v=0.9687521879420705d-4
5472 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
5473 v=0.2307897895367918d-3
5474 Call gen_oh( 2, n, x(n), y(n), z(n), w(n), a, b, v)
5475 v=0.2297310852498558d-3
5476 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
5477 a=0.2335728608887064d-1
5478 v=0.7386265944001919d-4
5479 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5480 a=0.4352987836550653d-1
5481 v=0.8257977698542210d-4
5482 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5483 a=0.6439200521088801d-1
5484 v=0.9706044762057630d-4
5485 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5486 a=0.9003943631993181d-1
5487 v=0.1302393847117003d-3
5488 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5489 a=0.1196706615548473d+0
5490 v=0.1541957004600968d-3
5491 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5492 a=0.1511715412838134d+0
5493 v=0.1704459770092199d-3
5494 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5495 a=0.1835982828503801d+0
5496 v=0.1827374890942906d-3
5497 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5498 a=0.2165081259155405d+0
5499 v=0.1926360817436107d-3
5500 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5501 a=0.2496208720417563d+0
5502 v=0.2008010239494833d-3
5503 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5504 a=0.2827200673567900d+0
5505 v=0.2075635983209175d-3
5506 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5507 a=0.3156190823994346d+0
5508 v=0.2131306638690909d-3
5509 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5510 a=0.3481476793749115d+0
5511 v=0.2176562329937335d-3
5512 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5513 a=0.3801466086947226d+0
5514 v=0.2212682262991018d-3
5515 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5516 a=0.4114652119634011d+0
5517 v=0.2240799515668565d-3
5518 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5519 a=0.4419598786519751d+0
5520 v=0.2261959816187525d-3
5521 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5522 a=0.4714925949329543d+0
5523 v=0.2277156368808855d-3
5524 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5525 a=0.4999293972879466d+0
5526 v=0.2287351772128336d-3
5527 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5528 a=0.5271387221431248d+0
5529 v=0.2293490814084085d-3
5530 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5531 a=0.5529896780837761d+0
5532 v=0.2296505312376273d-3
5533 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5534 a=0.6000856099481712d+0
5535 v=0.2296793832318756d-3
5536 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5537 a=0.6210562192785175d+0
5538 v=0.2295785443842974d-3
5539 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5540 a=0.6401165879934240d+0
5541 v=0.2295017931529102d-3
5542 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5543 a=0.6571144029244334d+0
5544 v=0.2295059638184868d-3
5545 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5546 a=0.6718910821718863d+0
5547 v=0.2296232343237362d-3
5548 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5549 a=0.6842845591099010d+0
5550 v=0.2298530178740771d-3
5551 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5552 a=0.6941353476269816d+0
5553 v=0.2301579790280501d-3
5554 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5555 a=0.7012965242212991d+0
5556 v=0.2304690404996513d-3
5557 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5558 a=0.7056471428242644d+0
5559 v=0.2307027995907102d-3
5560 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5561 a=0.4595557643585895d-1
5562 v=0.9312274696671092d-4
5563 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
5564 a=0.1049316742435023d+0
5565 v=0.1199919385876926d-3
5566 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
5567 a=0.1773548879549274d+0
5568 v=0.1598039138877690d-3
5569 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
5570 a=0.2559071411236127d+0
5571 v=0.1822253763574900d-3
5572 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
5573 a=0.3358156837985898d+0
5574 v=0.1988579593655040d-3
5575 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
5576 a=0.4155835743763893d+0
5577 v=0.2112620102533307d-3
5578 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
5579 a=0.4937894296167472d+0
5580 v=0.2201594887699007d-3
5581 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
5582 a=0.5691569694793316d+0
5583 v=0.2261622590895036d-3
5584 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
5585 a=0.6405840854894251d+0
5586 v=0.2296458453435705d-3
5587 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
5588 a=0.7345133894143348d-1
5589 b=0.2177844081486067d-1
5590 v=0.1006006990267000d-3
5591 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5592 a=0.1009859834044931d+0
5593 b=0.4590362185775188d-1
5594 v=0.1227676689635876d-3
5595 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5596 a=0.1324289619748758d+0
5597 b=0.7255063095690877d-1
5598 v=0.1467864280270117d-3
5599 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5600 a=0.1654272109607127d+0
5601 b=0.1017825451960684d+0
5602 v=0.1644178912101232d-3
5603 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5604 a=0.1990767186776461d+0
5605 b=0.1325652320980364d+0
5606 v=0.1777664890718961d-3
5607 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5608 a=0.2330125945523278d+0
5609 b=0.1642765374496765d+0
5610 v=0.1884825664516690d-3
5611 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5612 a=0.2670080611108287d+0
5613 b=0.1965360374337889d+0
5614 v=0.1973269246453848d-3
5615 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5616 a=0.3008753376294316d+0
5617 b=0.2290726770542238d+0
5618 v=0.2046767775855328d-3
5619 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5620 a=0.3344475596167860d+0
5621 b=0.2616645495370823d+0
5622 v=0.2107600125918040d-3
5623 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5624 a=0.3675709724070786d+0
5625 b=0.2941150728843141d+0
5626 v=0.2157416362266829d-3
5627 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5628 a=0.4001000887587812d+0
5629 b=0.3262440400919066d+0
5630 v=0.2197557816920721d-3
5631 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5632 a=0.4318956350436028d+0
5633 b=0.3578835350611916d+0
5634 v=0.2229192611835437d-3
5635 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5636 a=0.4628239056795531d+0
5637 b=0.3888751854043678d+0
5638 v=0.2253385110212775d-3
5639 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5640 a=0.4927563229773636d+0
5641 b=0.4190678003222840d+0
5642 v=0.2271137107548774d-3
5643 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5644 a=0.5215687136707969d+0
5645 b=0.4483151836883852d+0
5646 v=0.2283414092917525d-3
5647 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5648 a=0.5491402346984905d+0
5649 b=0.4764740676087880d+0
5650 v=0.2291161673130077d-3
5651 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5652 a=0.5753520160126075d+0
5653 b=0.5034021310998277d+0
5654 v=0.2295313908576598d-3
5655 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5656 a=0.1388326356417754d+0
5657 b=0.2435436510372806d-1
5658 v=0.1438204721359031d-3
5659 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5660 a=0.1743686900537244d+0
5661 b=0.5118897057342652d-1
5662 v=0.1607738025495257d-3
5663 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5664 a=0.2099737037950268d+0
5665 b=0.8014695048539634d-1
5666 v=0.1741483853528379d-3
5667 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5668 a=0.2454492590908548d+0
5669 b=0.1105117874155699d+0
5670 v=0.1851918467519151d-3
5671 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5672 a=0.2807219257864278d+0
5673 b=0.1417950531570966d+0
5674 v=0.1944628638070613d-3
5675 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5676 a=0.3156842271975842d+0
5677 b=0.1736604945719597d+0
5678 v=0.2022495446275152d-3
5679 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5680 a=0.3502090945177752d+0
5681 b=0.2058466324693981d+0
5682 v=0.2087462382438514d-3
5683 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5684 a=0.3841684849519686d+0
5685 b=0.2381284261195919d+0
5686 v=0.2141074754818308d-3
5687 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5688 a=0.4174372367906016d+0
5689 b=0.2703031270422569d+0
5690 v=0.2184640913748162d-3
5691 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5692 a=0.4498926465011892d+0
5693 b=0.3021845683091309d+0
5694 v=0.2219309165220329d-3
5695 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5696 a=0.4814146229807701d+0
5697 b=0.3335993355165720d+0
5698 v=0.2246123118340624d-3
5699 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5700 a=0.5118863625734701d+0
5701 b=0.3643833735518232d+0
5702 v=0.2266062766915125d-3
5703 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5704 a=0.5411947455119144d+0
5705 b=0.3943789541958179d+0
5706 v=0.2280072952230796d-3
5707 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5708 a=0.5692301500357246d+0
5709 b=0.4234320144403542d+0
5710 v=0.2289082025202583d-3
5711 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5712 a=0.5958857204139576d+0
5713 b=0.4513897947419260d+0
5714 v=0.2294012695120025d-3
5715 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5716 a=0.2156270284785766d+0
5717 b=0.2681225755444491d-1
5718 v=0.1722434488736947d-3
5719 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5720 a=0.2532385054909710d+0
5721 b=0.5557495747805614d-1
5722 v=0.1830237421455091d-3
5723 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5724 a=0.2902564617771537d+0
5725 b=0.8569368062950249d-1
5726 v=0.1923855349997633d-3
5727 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5728 a=0.3266979823143256d+0
5729 b=0.1167367450324135d+0
5730 v=0.2004067861936271d-3
5731 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5732 a=0.3625039627493614d+0
5733 b=0.1483861994003304d+0
5734 v=0.2071817297354263d-3
5735 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5736 a=0.3975838937548699d+0
5737 b=0.1803821503011405d+0
5738 v=0.2128250834102103d-3
5739 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5740 a=0.4318396099009774d+0
5741 b=0.2124962965666424d+0
5742 v=0.2174513719440102d-3
5743 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5744 a=0.4651706555732742d+0
5745 b=0.2445221837805913d+0
5746 v=0.2211661839150214d-3
5747 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5748 a=0.4974752649620969d+0
5749 b=0.2762701224322987d+0
5750 v=0.2240665257813102d-3
5751 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5752 a=0.5286517579627517d+0
5753 b=0.3075627775211328d+0
5754 v=0.2262439516632620d-3
5755 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5756 a=0.5586001195731895d+0
5757 b=0.3382311089826877d+0
5758 v=0.2277874557231869d-3
5759 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5760 a=0.5872229902021319d+0
5761 b=0.3681108834741399d+0
5762 v=0.2287854314454994d-3
5763 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5764 a=0.6144258616235123d+0
5765 b=0.3970397446872839d+0
5766 v=0.2293268499615575d-3
5767 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5768 a=0.2951676508064861d+0
5769 b=0.2867499538750441d-1
5770 v=0.1912628201529828d-3
5771 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5772 a=0.3335085485472725d+0
5773 b=0.5867879341903510d-1
5774 v=0.1992499672238701d-3
5775 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5776 a=0.3709561760636381d+0
5777 b=0.8961099205022284d-1
5778 v=0.2061275533454027d-3
5779 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5780 a=0.4074722861667498d+0
5781 b=0.1211627927626297d+0
5782 v=0.2119318215968572d-3
5783 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5784 a=0.4429923648839117d+0
5785 b=0.1530748903554898d+0
5786 v=0.2167416581882652d-3
5787 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5788 a=0.4774428052721736d+0
5789 b=0.1851176436721877d+0
5790 v=0.2206430730516600d-3
5791 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5792 a=0.5107446539535904d+0
5793 b=0.2170829107658179d+0
5794 v=0.2237186938699523d-3
5795 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5796 a=0.5428151370542935d+0
5797 b=0.2487786689026271d+0
5798 v=0.2260480075032884d-3
5799 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5800 a=0.5735699292556964d+0
5801 b=0.2800239952795016d+0
5802 v=0.2277098884558542d-3
5803 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5804 a=0.6029253794562866d+0
5805 b=0.3106445702878119d+0
5806 v=0.2287845715109671d-3
5807 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5808 a=0.6307998987073145d+0
5809 b=0.3404689500841194d+0
5810 v=0.2293547268236294d-3
5811 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5812 a=0.3752652273692719d+0
5813 b=0.2997145098184479d-1
5814 v=0.2056073839852528d-3
5815 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5816 a=0.4135383879344028d+0
5817 b=0.6086725898678011d-1
5818 v=0.2114235865831876d-3
5819 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5820 a=0.4506113885153907d+0
5821 b=0.9238849548435643d-1
5822 v=0.2163175629770551d-3
5823 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5824 a=0.4864401554606072d+0
5825 b=0.1242786603851851d+0
5826 v=0.2203392158111650d-3
5827 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5828 a=0.5209708076611709d+0
5829 b=0.1563086731483386d+0
5830 v=0.2235473176847839d-3
5831 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5832 a=0.5541422135830122d+0
5833 b=0.1882696509388506d+0
5834 v=0.2260024141501235d-3
5835 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5836 a=0.5858880915113817d+0
5837 b=0.2199672979126059d+0
5838 v=0.2277675929329182d-3
5839 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5840 a=0.6161399390603444d+0
5841 b=0.2512165482924867d+0
5842 v=0.2289102112284834d-3
5843 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5844 a=0.6448296482255090d+0
5845 b=0.2818368701871888d+0
5846 v=0.2295027954625118d-3
5847 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5848 a=0.4544796274917948d+0
5849 b=0.3088970405060312d-1
5850 v=0.2161281589879992d-3
5851 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5852 a=0.4919389072146628d+0
5853 b=0.6240947677636835d-1
5854 v=0.2201980477395102d-3
5855 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5856 a=0.5279313026985183d+0
5857 b=0.9430706144280313d-1
5858 v=0.2234952066593166d-3
5859 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5860 a=0.5624169925571135d+0
5861 b=0.1263547818770374d+0
5862 v=0.2260540098520838d-3
5863 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5864 a=0.5953484627093287d+0
5865 b=0.1583430788822594d+0
5866 v=0.2279157981899988d-3
5867 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5868 a=0.6266730715339185d+0
5869 b=0.1900748462555988d+0
5870 v=0.2291296918565571d-3
5871 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5872 a=0.6563363204278871d+0
5873 b=0.2213599519592567d+0
5874 v=0.2297533752536649d-3
5875 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5876 a=0.5314574716585696d+0
5877 b=0.3152508811515374d-1
5878 v=0.2234927356465995d-3
5879 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5880 a=0.5674614932298185d+0
5881 b=0.6343865291465561d-1
5882 v=0.2261288012985219d-3
5883 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5884 a=0.6017706004970264d+0
5885 b=0.9551503504223951d-1
5886 v=0.2280818160923688d-3
5887 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5888 a=0.6343471270264178d+0
5889 b=0.1275440099801196d+0
5890 v=0.2293773295180159d-3
5891 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5892 a=0.6651494599127802d+0
5893 b=0.1593252037671960d+0
5894 v=0.2300528767338634d-3
5895 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5896 a=0.6050184986005704d+0
5897 b=0.3192538338496105d-1
5898 v=0.2281893855065666d-3
5899 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5900 a=0.6390163550880400d+0
5901 b=0.6402824353962306d-1
5902 v=0.2295720444840727d-3
5903 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5904 a=0.6711199107088448d+0
5905 b=0.9609805077002909d-1
5906 v=0.2303227649026753d-3
5907 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5908 a=0.6741354429572275d+0
5909 b=0.3211853196273233d-1
5910 v=0.2304831913227114d-3
5911 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
5912 n=n-1
5913 RETURN
5914 END
5915 SUBROUTINE ld5294(X,Y,Z,W,N)
5916 real*8 x(5294)
5917 real*8 y(5294)
5918 real*8 z(5294)
5919 real*8 w(5294)
5920 INTEGER N
5921 DOUBLE PRECISION A,B,V
5922CVW
5923CVW LEBEDEV 5294-POINT ANGULAR GRID
5924CVW
5925chvd
5926chvd This subroutine is part of a set of subroutines that generate
5927chvd Lebedev grids [1-6] for integration on a sphere. The original
5928chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
5929chvd translated into fortran by Dr. Christoph van Wuellen.
5930chvd This subroutine was translated using a C to fortran77 conversion
5931chvd tool written by Dr. Christoph van Wuellen.
5932chvd
5933chvd Users of this code are asked to include reference [1] in their
5934chvd publications, and in the user- and programmers-manuals
5935chvd describing their codes.
5936chvd
5937chvd This code was distributed through CCL (http://wtempwtempwtemp.ccl.net/).
5938chvd
5939chvd [1] V.I. Lebedev, and D.N. Laikov
5940chvd "A quadrature formula for the sphere of the 131st
5941chvd algebraic order of accuracy"
5942chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
5943chvd
5944chvd [2] V.I. Lebedev
5945chvd "A quadrature formula for the sphere of 59th algebraic
5946chvd order of accuracy"
5947chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
5948chvd
5949chvd [3] V.I. Lebedev, and A.L. Skorokhodov
5950chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
5951chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
5952chvd
5953chvd [4] V.I. Lebedev
5954chvd "Spherical quadrature formulas exact to orders 25-29"
5955chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
5956chvd
5957chvd [5] V.I. Lebedev
5958chvd "Quadratures on a sphere"
5959chvd Computational Mathematics and Mathematical Physics, Vol. 16,
5960chvd 1976, pp. 10-24.
5961chvd
5962chvd [6] V.I. Lebedev
5963chvd "Values of the nodes and weights of ninth to seventeenth
5964chvd order Gauss-Markov quadrature formulae invariant under the
5965chvd octahedron group with inversion"
5966chvd Computational Mathematics and Mathematical Physics, Vol. 15,
5967chvd 1975, pp. 44-51.
5968chvd
5969 n=1
5970 v=0.9080510764308163d-4
5971 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
5972 v=0.2084824361987793d-3
5973 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
5974 a=0.2303261686261450d-1
5975 v=0.5011105657239616d-4
5976 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5977 a=0.3757208620162394d-1
5978 v=0.5942520409683854d-4
5979 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5980 a=0.5821912033821852d-1
5981 v=0.9564394826109721d-4
5982 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5983 a=0.8403127529194872d-1
5984 v=0.1185530657126338d-3
5985 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5986 a=0.1122927798060578d+0
5987 v=0.1364510114230331d-3
5988 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5989 a=0.1420125319192987d+0
5990 v=0.1505828825605415d-3
5991 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5992 a=0.1726396437341978d+0
5993 v=0.1619298749867023d-3
5994 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5995 a=0.2038170058115696d+0
5996 v=0.1712450504267789d-3
5997 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
5998 a=0.2352849892876508d+0
5999 v=0.1789891098164999d-3
6000 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6001 a=0.2668363354312461d+0
6002 v=0.1854474955629795d-3
6003 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6004 a=0.2982941279900452d+0
6005 v=0.1908148636673661d-3
6006 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6007 a=0.3295002922087076d+0
6008 v=0.1952377405281833d-3
6009 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6010 a=0.3603094918363593d+0
6011 v=0.1988349254282232d-3
6012 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6013 a=0.3905857895173920d+0
6014 v=0.2017079807160050d-3
6015 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6016 a=0.4202005758160837d+0
6017 v=0.2039473082709094d-3
6018 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6019 a=0.4490310061597227d+0
6020 v=0.2056360279288953d-3
6021 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6022 a=0.4769586160311491d+0
6023 v=0.2068525823066865d-3
6024 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6025 a=0.5038679887049750d+0
6026 v=0.2076724877534488d-3
6027 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6028 a=0.5296454286519961d+0
6029 v=0.2081694278237885d-3
6030 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6031 a=0.5541776207164850d+0
6032 v=0.2084157631219326d-3
6033 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6034 a=0.5990467321921213d+0
6035 v=0.2084381531128593d-3
6036 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6037 a=0.6191467096294587d+0
6038 v=0.2083476277129307d-3
6039 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6040 a=0.6375251212901849d+0
6041 v=0.2082686194459732d-3
6042 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6043 a=0.6540514381131168d+0
6044 v=0.2082475686112415d-3
6045 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6046 a=0.6685899064391510d+0
6047 v=0.2083139860289915d-3
6048 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6049 a=0.6810013009681648d+0
6050 v=0.2084745561831237d-3
6051 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6052 a=0.6911469578730340d+0
6053 v=0.2087091313375890d-3
6054 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6055 a=0.6988956915141736d+0
6056 v=0.2089718413297697d-3
6057 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6058 a=0.7041335794868720d+0
6059 v=0.2092003303479793d-3
6060 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6061 a=0.7067754398018567d+0
6062 v=0.2093336148263241d-3
6063 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6064 a=0.3840368707853623d-1
6065 v=0.7591708117365267d-4
6066 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
6067 a=0.9835485954117399d-1
6068 v=0.1083383968169186d-3
6069 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
6070 a=0.1665774947612998d+0
6071 v=0.1403019395292510d-3
6072 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
6073 a=0.2405702335362910d+0
6074 v=0.1615970179286436d-3
6075 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
6076 a=0.3165270770189046d+0
6077 v=0.1771144187504911d-3
6078 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
6079 a=0.3927386145645443d+0
6080 v=0.1887760022988168d-3
6081 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
6082 a=0.4678825918374656d+0
6083 v=0.1973474670768214d-3
6084 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
6085 a=0.5408022024266935d+0
6086 v=0.2033787661234659d-3
6087 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
6088 a=0.6104967445752438d+0
6089 v=0.2072343626517331d-3
6090 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
6091 a=0.6760910702685738d+0
6092 v=0.2091177834226918d-3
6093 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
6094 a=0.6655644120217392d-1
6095 b=0.1936508874588424d-1
6096 v=0.9316684484675566d-4
6097 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6098 a=0.9446246161270182d-1
6099 b=0.4252442002115869d-1
6100 v=0.1116193688682976d-3
6101 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6102 a=0.1242651925452509d+0
6103 b=0.6806529315354374d-1
6104 v=0.1298623551559414d-3
6105 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6106 a=0.1553438064846751d+0
6107 b=0.9560957491205369d-1
6108 v=0.1450236832456426d-3
6109 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6110 a=0.1871137110542670d+0
6111 b=0.1245931657452888d+0
6112 v=0.1572719958149914d-3
6113 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6114 a=0.2192612628836257d+0
6115 b=0.1545385828778978d+0
6116 v=0.1673234785867195d-3
6117 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6118 a=0.2515682807206955d+0
6119 b=0.1851004249723368d+0
6120 v=0.1756860118725188d-3
6121 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6122 a=0.2838535866287290d+0
6123 b=0.2160182608272384d+0
6124 v=0.1826776290439367d-3
6125 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6126 a=0.3159578817528521d+0
6127 b=0.2470799012277111d+0
6128 v=0.1885116347992865d-3
6129 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6130 a=0.3477370882791392d+0
6131 b=0.2781014208986402d+0
6132 v=0.1933457860170574d-3
6133 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6134 a=0.3790576960890540d+0
6135 b=0.3089172523515731d+0
6136 v=0.1973060671902064d-3
6137 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6138 a=0.4097938317810200d+0
6139 b=0.3393750055472244d+0
6140 v=0.2004987099616311d-3
6141 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6142 a=0.4398256572859637d+0
6143 b=0.3693322470987730d+0
6144 v=0.2030170909281499d-3
6145 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6146 a=0.4690384114718480d+0
6147 b=0.3986541005609877d+0
6148 v=0.2049461460119080d-3
6149 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6150 a=0.4973216048301053d+0
6151 b=0.4272112491408562d+0
6152 v=0.2063653565200186d-3
6153 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6154 a=0.5245681526132446d+0
6155 b=0.4548781735309936d+0
6156 v=0.2073507927381027d-3
6157 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6158 a=0.5506733911803888d+0
6159 b=0.4815315355023251d+0
6160 v=0.2079764593256122d-3
6161 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6162 a=0.5755339829522475d+0
6163 b=0.5070486445801855d+0
6164 v=0.2083150534968778d-3
6165 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6166 a=0.1305472386056362d+0
6167 b=0.2284970375722366d-1
6168 v=0.1262715121590664d-3
6169 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6170 a=0.1637327908216477d+0
6171 b=0.4812254338288384d-1
6172 v=0.1414386128545972d-3
6173 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6174 a=0.1972734634149637d+0
6175 b=0.7531734457511935d-1
6176 v=0.1538740401313898d-3
6177 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6178 a=0.2308694653110130d+0
6179 b=0.1039043639882017d+0
6180 v=0.1642434942331432d-3
6181 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6182 a=0.2643899218338160d+0
6183 b=0.1334526587117626d+0
6184 v=0.1729790609237496d-3
6185 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6186 a=0.2977171599622171d+0
6187 b=0.1636414868936382d+0
6188 v=0.1803505190260828d-3
6189 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6190 a=0.3307293903032310d+0
6191 b=0.1942195406166568d+0
6192 v=0.1865475350079657d-3
6193 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6194 a=0.3633069198219073d+0
6195 b=0.2249752879943753d+0
6196 v=0.1917182669679069d-3
6197 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6198 a=0.3953346955922727d+0
6199 b=0.2557218821820032d+0
6200 v=0.1959851709034382d-3
6201 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6202 a=0.4267018394184914d+0
6203 b=0.2862897925213193d+0
6204 v=0.1994529548117882d-3
6205 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6206 a=0.4573009622571704d+0
6207 b=0.3165224536636518d+0
6208 v=0.2022138911146548d-3
6209 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6210 a=0.4870279559856109d+0
6211 b=0.3462730221636496d+0
6212 v=0.2043518024208592d-3
6213 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6214 a=0.5157819581450322d+0
6215 b=0.3754016870282835d+0
6216 v=0.2059450313018110d-3
6217 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6218 a=0.5434651666465393d+0
6219 b=0.4037733784993613d+0
6220 v=0.2070685715318472d-3
6221 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6222 a=0.5699823887764627d+0
6223 b=0.4312557784139123d+0
6224 v=0.2077955310694373d-3
6225 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6226 a=0.5952403350947741d+0
6227 b=0.4577175367122110d+0
6228 v=0.2081980387824712d-3
6229 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6230 a=0.2025152599210369d+0
6231 b=0.2520253617719557d-1
6232 v=0.1521318610377956d-3
6233 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6234 a=0.2381066653274425d+0
6235 b=0.5223254506119000d-1
6236 v=0.1622772720185755d-3
6237 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6238 a=0.2732823383651612d+0
6239 b=0.8060669688588620d-1
6240 v=0.1710498139420709d-3
6241 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6242 a=0.3080137692611118d+0
6243 b=0.1099335754081255d+0
6244 v=0.1785911149448736d-3
6245 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6246 a=0.3422405614587601d+0
6247 b=0.1399120955959857d+0
6248 v=0.1850125313687736d-3
6249 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6250 a=0.3758808773890420d+0
6251 b=0.1702977801651705d+0
6252 v=0.1904229703933298d-3
6253 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6254 a=0.4088458383438932d+0
6255 b=0.2008799256601680d+0
6256 v=0.1949259956121987d-3
6257 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6258 a=0.4410450550841152d+0
6259 b=0.2314703052180836d+0
6260 v=0.1986161545363960d-3
6261 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6262 a=0.4723879420561312d+0
6263 b=0.2618972111375892d+0
6264 v=0.2015790585641370d-3
6265 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6266 a=0.5027843561874343d+0
6267 b=0.2920013195600270d+0
6268 v=0.2038934198707418d-3
6269 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6270 a=0.5321453674452458d+0
6271 b=0.3216322555190551d+0
6272 v=0.2056334060538251d-3
6273 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6274 a=0.5603839113834030d+0
6275 b=0.3506456615934198d+0
6276 v=0.2068705959462289d-3
6277 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6278 a=0.5874150706875146d+0
6279 b=0.3789007181306267d+0
6280 v=0.2076753906106002d-3
6281 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6282 a=0.6131559381660038d+0
6283 b=0.4062580170572782d+0
6284 v=0.2081179391734803d-3
6285 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6286 a=0.2778497016394506d+0
6287 b=0.2696271276876226d-1
6288 v=0.1700345216228943d-3
6289 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6290 a=0.3143733562261912d+0
6291 b=0.5523469316960465d-1
6292 v=0.1774906779990410d-3
6293 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6294 a=0.3501485810261827d+0
6295 b=0.8445193201626464d-1
6296 v=0.1839659377002642d-3
6297 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6298 a=0.3851430322303653d+0
6299 b=0.1143263119336083d+0
6300 v=0.1894987462975169d-3
6301 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6302 a=0.4193013979470415d+0
6303 b=0.1446177898344475d+0
6304 v=0.1941548809452595d-3
6305 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6306 a=0.4525585960458567d+0
6307 b=0.1751165438438091d+0
6308 v=0.1980078427252384d-3
6309 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6310 a=0.4848447779622947d+0
6311 b=0.2056338306745660d+0
6312 v=0.2011296284744488d-3
6313 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6314 a=0.5160871208276894d+0
6315 b=0.2359965487229226d+0
6316 v=0.2035888456966776d-3
6317 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6318 a=0.5462112185696926d+0
6319 b=0.2660430223139146d+0
6320 v=0.2054516325352142d-3
6321 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6322 a=0.5751425068101757d+0
6323 b=0.2956193664498032d+0
6324 v=0.2067831033092635d-3
6325 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6326 a=0.6028073872853596d+0
6327 b=0.3245763905312779d+0
6328 v=0.2076485320284876d-3
6329 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6330 a=0.6291338275278409d+0
6331 b=0.3527670026206972d+0
6332 v=0.2081141439525255d-3
6333 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6334 a=0.3541797528439391d+0
6335 b=0.2823853479435550d-1
6336 v=0.1834383015469222d-3
6337 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6338 a=0.3908234972074657d+0
6339 b=0.5741296374713106d-1
6340 v=0.1889540591777677d-3
6341 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6342 a=0.4264408450107590d+0
6343 b=0.8724646633650199d-1
6344 v=0.1936677023597375d-3
6345 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6346 a=0.4609949666553286d+0
6347 b=0.1175034422915616d+0
6348 v=0.1976176495066504d-3
6349 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6350 a=0.4944389496536006d+0
6351 b=0.1479755652628428d+0
6352 v=0.2008536004560983d-3
6353 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6354 a=0.5267194884346086d+0
6355 b=0.1784740659484352d+0
6356 v=0.2034280351712291d-3
6357 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6358 a=0.5577787810220990d+0
6359 b=0.2088245700431244d+0
6360 v=0.2053944466027758d-3
6361 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6362 a=0.5875563763536670d+0
6363 b=0.2388628136570763d+0
6364 v=0.2068077642882360d-3
6365 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6366 a=0.6159910016391269d+0
6367 b=0.2684308928769185d+0
6368 v=0.2077250949661599d-3
6369 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6370 a=0.6430219602956268d+0
6371 b=0.2973740761960252d+0
6372 v=0.2082062440705320d-3
6373 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6374 a=0.4300647036213646d+0
6375 b=0.2916399920493977d-1
6376 v=0.1934374486546626d-3
6377 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6378 a=0.4661486308935531d+0
6379 b=0.5898803024755659d-1
6380 v=0.1974107010484300d-3
6381 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6382 a=0.5009658555287261d+0
6383 b=0.8924162698525409d-1
6384 v=0.2007129290388658d-3
6385 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6386 a=0.5344824270447704d+0
6387 b=0.1197185199637321d+0
6388 v=0.2033736947471293d-3
6389 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6390 a=0.5666575997416371d+0
6391 b=0.1502300756161382d+0
6392 v=0.2054287125902493d-3
6393 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6394 a=0.5974457471404752d+0
6395 b=0.1806004191913564d+0
6396 v=0.2069184936818894d-3
6397 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6398 a=0.6267984444116886d+0
6399 b=0.2106621764786252d+0
6400 v=0.2078883689808782d-3
6401 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6402 a=0.6546664713575417d+0
6403 b=0.2402526932671914d+0
6404 v=0.2083886366116359d-3
6405 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6406 a=0.5042711004437253d+0
6407 b=0.2982529203607657d-1
6408 v=0.2006593275470817d-3
6409 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6410 a=0.5392127456774380d+0
6411 b=0.6008728062339922d-1
6412 v=0.2033728426135397d-3
6413 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6414 a=0.5726819437668618d+0
6415 b=0.9058227674571398d-1
6416 v=0.2055008781377608d-3
6417 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6418 a=0.6046469254207278d+0
6419 b=0.1211219235803400d+0
6420 v=0.2070651783518502d-3
6421 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6422 a=0.6350716157434952d+0
6423 b=0.1515286404791580d+0
6424 v=0.2080953335094320d-3
6425 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6426 a=0.6639177679185454d+0
6427 b=0.1816314681255552d+0
6428 v=0.2086284998988521d-3
6429 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6430 a=0.5757276040972253d+0
6431 b=0.3026991752575440d-1
6432 v=0.2055549387644668d-3
6433 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6434 a=0.6090265823139755d+0
6435 b=0.6078402297870770d-1
6436 v=0.2071871850267654d-3
6437 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6438 a=0.6406735344387661d+0
6439 b=0.9135459984176636d-1
6440 v=0.2082856600431965d-3
6441 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6442 a=0.6706397927793709d+0
6443 b=0.1218024155966590d+0
6444 v=0.2088705858819358d-3
6445 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6446 a=0.6435019674426665d+0
6447 b=0.3052608357660639d-1
6448 v=0.2083995867536322d-3
6449 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6450 a=0.6747218676375681d+0
6451 b=0.6112185773983089d-1
6452 v=0.2090509712889637d-3
6453 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6454 n=n-1
6455 RETURN
6456 END
6457 SUBROUTINE ld5810(X,Y,Z,W,N)
6458 real*8 x(5810)
6459 real*8 y(5810)
6460 real*8 z(5810)
6461 real*8 w(5810)
6462 INTEGER N
6463 DOUBLE PRECISION A,B,V
6464CVW
6465CVW LEBEDEV 5810-POINT ANGULAR GRID
6466CVW
6467chvd
6468chvd This subroutine is part of a set of subroutines that generate
6469chvd Lebedev grids [1-6] for integration on a sphere. The original
6470chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
6471chvd translated into fortran by Dr. Christoph van Wuellen.
6472chvd This subroutine was translated using a C to fortran77 conversion
6473chvd tool written by Dr. Christoph van Wuellen.
6474chvd
6475chvd Users of this code are asked to include reference [1] in their
6476chvd publications, and in the user- and programmers-manuals
6477chvd describing their codes.
6478chvd
6479chvd This code was distributed through CCL (http://wtempwtempwtemp.ccl.net/).
6480chvd
6481chvd [1] V.I. Lebedev, and D.N. Laikov
6482chvd "A quadrature formula for the sphere of the 131st
6483chvd algebraic order of accuracy"
6484chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
6485chvd
6486chvd [2] V.I. Lebedev
6487chvd "A quadrature formula for the sphere of 59th algebraic
6488chvd order of accuracy"
6489chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
6490chvd
6491chvd [3] V.I. Lebedev, and A.L. Skorokhodov
6492chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
6493chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
6494chvd
6495chvd [4] V.I. Lebedev
6496chvd "Spherical quadrature formulas exact to orders 25-29"
6497chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
6498chvd
6499chvd [5] V.I. Lebedev
6500chvd "Quadratures on a sphere"
6501chvd Computational Mathematics and Mathematical Physics, Vol. 16,
6502chvd 1976, pp. 10-24.
6503chvd
6504chvd [6] V.I. Lebedev
6505chvd "Values of the nodes and weights of ninth to seventeenth
6506chvd order Gauss-Markov quadrature formulae invariant under the
6507chvd octahedron group with inversion"
6508chvd Computational Mathematics and Mathematical Physics, Vol. 15,
6509chvd 1975, pp. 44-51.
6510chvd
6511 n=1
6512 v=0.9735347946175486d-5
6513 Call gen_oh( 1, n, x(n), y(n), z(n), w(n), a, b, v)
6514 v=0.1907581241803167d-3
6515 Call gen_oh( 2, n, x(n), y(n), z(n), w(n), a, b, v)
6516 v=0.1901059546737578d-3
6517 Call gen_oh( 3, n, x(n), y(n), z(n), w(n), a, b, v)
6518 a=0.1182361662400277d-1
6519 v=0.3926424538919212d-4
6520 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6521 a=0.3062145009138958d-1
6522 v=0.6667905467294382d-4
6523 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6524 a=0.5329794036834243d-1
6525 v=0.8868891315019135d-4
6526 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6527 a=0.7848165532862220d-1
6528 v=0.1066306000958872d-3
6529 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6530 a=0.1054038157636201d+0
6531 v=0.1214506743336128d-3
6532 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6533 a=0.1335577797766211d+0
6534 v=0.1338054681640871d-3
6535 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6536 a=0.1625769955502252d+0
6537 v=0.1441677023628504d-3
6538 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6539 a=0.1921787193412792d+0
6540 v=0.1528880200826557d-3
6541 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6542 a=0.2221340534690548d+0
6543 v=0.1602330623773609d-3
6544 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6545 a=0.2522504912791132d+0
6546 v=0.1664102653445244d-3
6547 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6548 a=0.2823610860679697d+0
6549 v=0.1715845854011323d-3
6550 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6551 a=0.3123173966267560d+0
6552 v=0.1758901000133069d-3
6553 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6554 a=0.3419847036953789d+0
6555 v=0.1794382485256736d-3
6556 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6557 a=0.3712386456999758d+0
6558 v=0.1823238106757407d-3
6559 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6560 a=0.3999627649876828d+0
6561 v=0.1846293252959976d-3
6562 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6563 a=0.4280466458648093d+0
6564 v=0.1864284079323098d-3
6565 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6566 a=0.4553844360185711d+0
6567 v=0.1877882694626914d-3
6568 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6569 a=0.4818736094437834d+0
6570 v=0.1887716321852025d-3
6571 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6572 a=0.5074138709260629d+0
6573 v=0.1894381638175673d-3
6574 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6575 a=0.5319061304570707d+0
6576 v=0.1898454899533629d-3
6577 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6578 a=0.5552514978677286d+0
6579 v=0.1900497929577815d-3
6580 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6581 a=0.5981009025246183d+0
6582 v=0.1900671501924092d-3
6583 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6584 a=0.6173990192228116d+0
6585 v=0.1899837555533510d-3
6586 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6587 a=0.6351365239411131d+0
6588 v=0.1899014113156229d-3
6589 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6590 a=0.6512010228227200d+0
6591 v=0.1898581257705106d-3
6592 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6593 a=0.6654758363948120d+0
6594 v=0.1898804756095753d-3
6595 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6596 a=0.6778410414853370d+0
6597 v=0.1899793610426402d-3
6598 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6599 a=0.6881760887484110d+0
6600 v=0.1901464554844117d-3
6601 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6602 a=0.6963645267094598d+0
6603 v=0.1903533246259542d-3
6604 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6605 a=0.7023010617153579d+0
6606 v=0.1905556158463228d-3
6607 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6608 a=0.7059004636628753d+0
6609 v=0.1907037155663528d-3
6610 Call gen_oh( 4, n, x(n), y(n), z(n), w(n), a, b, v)
6611 a=0.3552470312472575d-1
6612 v=0.5992997844249967d-4
6613 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
6614 a=0.9151176620841283d-1
6615 v=0.9749059382456978d-4
6616 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
6617 a=0.1566197930068980d+0
6618 v=0.1241680804599158d-3
6619 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
6620 a=0.2265467599271907d+0
6621 v=0.1437626154299360d-3
6622 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
6623 a=0.2988242318581361d+0
6624 v=0.1584200054793902d-3
6625 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
6626 a=0.3717482419703886d+0
6627 v=0.1694436550982744d-3
6628 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
6629 a=0.4440094491758889d+0
6630 v=0.1776617014018108d-3
6631 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
6632 a=0.5145337096756642d+0
6633 v=0.1836132434440077d-3
6634 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
6635 a=0.5824053672860230d+0
6636 v=0.1876494727075983d-3
6637 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
6638 a=0.6468283961043370d+0
6639 v=0.1899906535336482d-3
6640 Call gen_oh( 5, n, x(n), y(n), z(n), w(n), a, b, v)
6641 a=0.6095964259104373d-1
6642 b=0.1787828275342931d-1
6643 v=0.8143252820767350d-4
6644 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6645 a=0.8811962270959388d-1
6646 b=0.3953888740792096d-1
6647 v=0.9998859890887728d-4
6648 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6649 a=0.1165936722428831d+0
6650 b=0.6378121797722990d-1
6651 v=0.1156199403068359d-3
6652 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6653 a=0.1460232857031785d+0
6654 b=0.8985890813745037d-1
6655 v=0.1287632092635513d-3
6656 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6657 a=0.1761197110181755d+0
6658 b=0.1172606510576162d+0
6659 v=0.1398378643365139d-3
6660 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6661 a=0.2066471190463718d+0
6662 b=0.1456102876970995d+0
6663 v=0.1491876468417391d-3
6664 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6665 a=0.2374076026328152d+0
6666 b=0.1746153823011775d+0
6667 v=0.1570855679175456d-3
6668 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6669 a=0.2682305474337051d+0
6670 b=0.2040383070295584d+0
6671 v=0.1637483948103775d-3
6672 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6673 a=0.2989653312142369d+0
6674 b=0.2336788634003698d+0
6675 v=0.1693500566632843d-3
6676 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6677 a=0.3294762752772209d+0
6678 b=0.2633632752654219d+0
6679 v=0.1740322769393633d-3
6680 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6681 a=0.3596390887276086d+0
6682 b=0.2929369098051601d+0
6683 v=0.1779126637278296d-3
6684 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6685 a=0.3893383046398812d+0
6686 b=0.3222592785275512d+0
6687 v=0.1810908108835412d-3
6688 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6689 a=0.4184653789358347d+0
6690 b=0.3512004791195743d+0
6691 v=0.1836529132600190d-3
6692 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6693 a=0.4469172319076166d+0
6694 b=0.3796385677684537d+0
6695 v=0.1856752841777379d-3
6696 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6697 a=0.4745950813276976d+0
6698 b=0.4074575378263879d+0
6699 v=0.1872270566606832d-3
6700 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6701 a=0.5014034601410262d+0
6702 b=0.4345456906027828d+0
6703 v=0.1883722645591307d-3
6704 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6705 a=0.5272493404551239d+0
6706 b=0.4607942515205134d+0
6707 v=0.1891714324525297d-3
6708 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6709 a=0.5520413051846366d+0
6710 b=0.4860961284181720d+0
6711 v=0.1896827480450146d-3
6712 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6713 a=0.5756887237503077d+0
6714 b=0.5103447395342790d+0
6715 v=0.1899628417059528d-3
6716 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6717 a=0.1225039430588352d+0
6718 b=0.2136455922655793d-1
6719 v=0.1123301829001669d-3
6720 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6721 a=0.1539113217321372d+0
6722 b=0.4520926166137188d-1
6723 v=0.1253698826711277d-3
6724 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6725 a=0.1856213098637712d+0
6726 b=0.7086468177864818d-1
6727 v=0.1366266117678531d-3
6728 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6729 a=0.2174998728035131d+0
6730 b=0.9785239488772918d-1
6731 v=0.1462736856106918d-3
6732 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6733 a=0.2494128336938330d+0
6734 b=0.1258106396267210d+0
6735 v=0.1545076466685412d-3
6736 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6737 a=0.2812321562143480d+0
6738 b=0.1544529125047001d+0
6739 v=0.1615096280814007d-3
6740 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6741 a=0.3128372276456111d+0
6742 b=0.1835433512202753d+0
6743 v=0.1674366639741759d-3
6744 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6745 a=0.3441145160177973d+0
6746 b=0.2128813258619585d+0
6747 v=0.1724225002437900d-3
6748 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6749 a=0.3749567714853510d+0
6750 b=0.2422913734880829d+0
6751 v=0.1765810822987288d-3
6752 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6753 a=0.4052621732015610d+0
6754 b=0.2716163748391453d+0
6755 v=0.1800104126010751d-3
6756 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6757 a=0.4349335453522385d+0
6758 b=0.3007127671240280d+0
6759 v=0.1827960437331284d-3
6760 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6761 a=0.4638776641524965d+0
6762 b=0.3294470677216479d+0
6763 v=0.1850140300716308d-3
6764 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6765 a=0.4920046410462687d+0
6766 b=0.3576932543699155d+0
6767 v=0.1867333507394938d-3
6768 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6769 a=0.5192273554861704d+0
6770 b=0.3853307059757764d+0
6771 v=0.1880178688638289d-3
6772 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6773 a=0.5454609081136522d+0
6774 b=0.4122425044452694d+0
6775 v=0.1889278925654758d-3
6776 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6777 a=0.5706220661424140d+0
6778 b=0.4383139587781027d+0
6779 v=0.1895213832507346d-3
6780 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6781 a=0.5946286755181518d+0
6782 b=0.4634312536300553d+0
6783 v=0.1898548277397420d-3
6784 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6785 a=0.1905370790924295d+0
6786 b=0.2371311537781979d-1
6787 v=0.1349105935937341d-3
6788 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6789 a=0.2242518717748009d+0
6790 b=0.4917878059254806d-1
6791 v=0.1444060068369326d-3
6792 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6793 a=0.2577190808025936d+0
6794 b=0.7595498960495142d-1
6795 v=0.1526797390930008d-3
6796 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6797 a=0.2908724534927187d+0
6798 b=0.1036991083191100d+0
6799 v=0.1598208771406474d-3
6800 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6801 a=0.3236354020056219d+0
6802 b=0.1321348584450234d+0
6803 v=0.1659354368615331d-3
6804 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6805 a=0.3559267359304543d+0
6806 b=0.1610316571314789d+0
6807 v=0.1711279910946440d-3
6808 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6809 a=0.3876637123676956d+0
6810 b=0.1901912080395707d+0
6811 v=0.1754952725601440d-3
6812 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6813 a=0.4187636705218842d+0
6814 b=0.2194384950137950d+0
6815 v=0.1791247850802529d-3
6816 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6817 a=0.4491449019883107d+0
6818 b=0.2486155334763858d+0
6819 v=0.1820954300877716d-3
6820 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6821 a=0.4787270932425445d+0
6822 b=0.2775768931812335d+0
6823 v=0.1844788524548449d-3
6824 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6825 a=0.5074315153055574d+0
6826 b=0.3061863786591120d+0
6827 v=0.1863409481706220d-3
6828 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6829 a=0.5351810507738336d+0
6830 b=0.3343144718152556d+0
6831 v=0.1877433008795068d-3
6832 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6833 a=0.5619001025975381d+0
6834 b=0.3618362729028427d+0
6835 v=0.1887444543705232d-3
6836 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6837 a=0.5875144035268046d+0
6838 b=0.3886297583620408d+0
6839 v=0.1894009829375006d-3
6840 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6841 a=0.6119507308734495d+0
6842 b=0.4145742277792031d+0
6843 v=0.1897683345035198d-3
6844 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6845 a=0.2619733870119463d+0
6846 b=0.2540047186389353d-1
6847 v=0.1517327037467653d-3
6848 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6849 a=0.2968149743237949d+0
6850 b=0.5208107018543989d-1
6851 v=0.1587740557483543d-3
6852 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6853 a=0.3310451504860488d+0
6854 b=0.7971828470885599d-1
6855 v=0.1649093382274097d-3
6856 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6857 a=0.3646215567376676d+0
6858 b=0.1080465999177927d+0
6859 v=0.1701915216193265d-3
6860 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6861 a=0.3974916785279360d+0
6862 b=0.1368413849366629d+0
6863 v=0.1746847753144065d-3
6864 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6865 a=0.4295967403772029d+0
6866 b=0.1659073184763559d+0
6867 v=0.1784555512007570d-3
6868 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6869 a=0.4608742854473447d+0
6870 b=0.1950703730454614d+0
6871 v=0.1815687562112174d-3
6872 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6873 a=0.4912598858949903d+0
6874 b=0.2241721144376724d+0
6875 v=0.1840864370663302d-3
6876 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6877 a=0.5206882758945558d+0
6878 b=0.2530655255406489d+0
6879 v=0.1860676785390006d-3
6880 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6881 a=0.5490940914019819d+0
6882 b=0.2816118409731066d+0
6883 v=0.1875690583743703d-3
6884 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6885 a=0.5764123302025542d+0
6886 b=0.3096780504593238d+0
6887 v=0.1886453236347225d-3
6888 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6889 a=0.6025786004213506d+0
6890 b=0.3371348366394987d+0
6891 v=0.1893501123329645d-3
6892 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6893 a=0.6275291964794956d+0
6894 b=0.3638547827694396d+0
6895 v=0.1897366184519868d-3
6896 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6897 a=0.3348189479861771d+0
6898 b=0.2664841935537443d-1
6899 v=0.1643908815152736d-3
6900 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6901 a=0.3699515545855295d+0
6902 b=0.5424000066843495d-1
6903 v=0.1696300350907768d-3
6904 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6905 a=0.4042003071474669d+0
6906 b=0.8251992715430854d-1
6907 v=0.1741553103844483d-3
6908 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6909 a=0.4375320100182624d+0
6910 b=0.1112695182483710d+0
6911 v=0.1780015282386092d-3
6912 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6913 a=0.4699054490335947d+0
6914 b=0.1402964116467816d+0
6915 v=0.1812116787077125d-3
6916 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6917 a=0.5012739879431952d+0
6918 b=0.1694275117584291d+0
6919 v=0.1838323158085421d-3
6920 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6921 a=0.5315874883754966d+0
6922 b=0.1985038235312689d+0
6923 v=0.1859113119837737d-3
6924 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6925 a=0.5607937109622117d+0
6926 b=0.2273765660020893d+0
6927 v=0.1874969220221698d-3
6928 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6929 a=0.5888393223495521d+0
6930 b=0.2559041492849764d+0
6931 v=0.1886375612681076d-3
6932 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6933 a=0.6156705979160163d+0
6934 b=0.2839497251976899d+0
6935 v=0.1893819575809276d-3
6936 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6937 a=0.6412338809078123d+0
6938 b=0.3113791060500690d+0
6939 v=0.1897794748256767d-3
6940 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6941 a=0.4076051259257167d+0
6942 b=0.2757792290858463d-1
6943 v=0.1738963926584846d-3
6944 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6945 a=0.4423788125791520d+0
6946 b=0.5584136834984293d-1
6947 v=0.1777442359873466d-3
6948 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6949 a=0.4760480917328258d+0
6950 b=0.8457772087727143d-1
6951 v=0.1810010815068719d-3
6952 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6953 a=0.5085838725946297d+0
6954 b=0.1135975846359248d+0
6955 v=0.1836920318248129d-3
6956 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6957 a=0.5399513637391218d+0
6958 b=0.1427286904765053d+0
6959 v=0.1858489473214328d-3
6960 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6961 a=0.5701118433636380d+0
6962 b=0.1718112740057635d+0
6963 v=0.1875079342496592d-3
6964 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6965 a=0.5990240530606021d+0
6966 b=0.2006944855985351d+0
6967 v=0.1887080239102310d-3
6968 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6969 a=0.6266452685139695d+0
6970 b=0.2292335090598907d+0
6971 v=0.1894905752176822d-3
6972 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6973 a=0.6529320971415942d+0
6974 b=0.2572871512353714d+0
6975 v=0.1898991061200695d-3
6976 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6977 a=0.4791583834610126d+0
6978 b=0.2826094197735932d-1
6979 v=0.1809065016458791d-3
6980 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6981 a=0.5130373952796940d+0
6982 b=0.5699871359683649d-1
6983 v=0.1836297121596799d-3
6984 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6985 a=0.5456252429628476d+0
6986 b=0.8602712528554394d-1
6987 v=0.1858426916241869d-3
6988 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6989 a=0.5768956329682385d+0
6990 b=0.1151748137221281d+0
6991 v=0.1875654101134641d-3
6992 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6993 a=0.6068186944699046d+0
6994 b=0.1442811654136362d+0
6995 v=0.1888240751833503d-3
6996 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
6997 a=0.6353622248024907d+0
6998 b=0.1731930321657680d+0
6999 v=0.1896497383866979d-3
7000 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
7001 a=0.6624927035731797d+0
7002 b=0.2017619958756061d+0
7003 v=0.1900775530219121d-3
7004 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
7005 a=0.5484933508028488d+0
7006 b=0.2874219755907391d-1
7007 v=0.1858525041478814d-3
7008 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
7009 a=0.5810207682142106d+0
7010 b=0.5778312123713695d-1
7011 v=0.1876248690077947d-3
7012 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
7013 a=0.6120955197181352d+0
7014 b=0.8695262371439526d-1
7015 v=0.1889404439064607d-3
7016 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
7017 a=0.6416944284294319d+0
7018 b=0.1160893767057166d+0
7019 v=0.1898168539265290d-3
7020 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
7021 a=0.6697926391731260d+0
7022 b=0.1450378826743251d+0
7023 v=0.1902779940661772d-3
7024 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
7025 a=0.6147594390585488d+0
7026 b=0.2904957622341456d-1
7027 v=0.1890125641731815d-3
7028 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
7029 a=0.6455390026356783d+0
7030 b=0.5823809152617197d-1
7031 v=0.1899434637795751d-3
7032 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
7033 a=0.6747258588365477d+0
7034 b=0.8740384899884715d-1
7035 v=0.1904520856831751d-3
7036 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
7037 a=0.6772135750395347d+0
7038 b=0.2919946135808105d-1
7039 v=0.1905534498734563d-3
7040 Call gen_oh( 6, n, x(n), y(n), z(n), w(n), a, b, v)
7041 n=n-1
7042 RETURN
7043 END